列方程解应用题
列方程解应用题
列方程解应用题教学内容
教科书118页例6及“做一做”。练习二十九1~5题。
一、素质教育目标
(一)知识教学点
1.使学生初步学会分析“已知有两个数的和与差,和两个数的倍数关系,求两个数各是多少”的应用题的数系,正确列出方程进行解答。
2.指导学生设末知数,表示两个数之间的关系。
3.训练学生分析这类应用题的数量关系。
(二)能力训练点
1.会解答所列方程形如ax bx=c的应用题。
2.会正确找出应用题的等量关系。
3.会进行检验。
(三)德育渗透点
1.培养学生认真学习的好习惯。
2.渗透不同事物之间既有联系又有区别的观点。
(四)美育渗透点
通过题目中的等量关系,使学生感受到人民的卓越智慧,体会到源于生活。
二、学法指导
1.引导学生分析题意,找出等量关系。
2.指导学生试算,利用已有经验进行体验。
三、教学重点
用方程解答“和倍”“差倍”应用题的方法。
四、教学难点
分析应用题等量关系,设末知数。
教学过程设计
(一)复习准备
1.列方程并求出方程的解。
(1)x的5倍与x的3倍的和是40;
(2)某数的4倍比它的6倍少24。
2.根据下面的条件,找出数量间的相等关系。
(1)大米与面粉重量的`和是1000千克;(大米的重量+面粉的重量=重量和。)
(2)每支钢笔比每支圆珠笔贵3.8元;(每支钢笔的价钱-每支圆珠笔的价钱=贵的价钱。)
(3)已看的页数比剩下的页数少76页。(剩下的页数-已看的页数=少的页数。)
3.用含有字母的式子表示。
(1)学校科技组有女生x人,男生人数是女生的3倍,男生有()人,男生女生一共有()人,男生比女生多()人;
(2)果园里苹果树的棵数是梨树的2倍,梨树有x棵,苹果树有()棵,苹果树和梨树一共有()棵,梨树比苹果树少()棵。
4.解答:果园里有桃树45棵,杏树的棵数是桃树的3倍。两种树一共有多少棵?
(1)学生审题画图,独立解答。
(2)学生解答后讲解:
解法1:
列式:45+45×3=45+135=180(棵)
解法2:
列式:45×(3+1)=45×4=180(棵)
答:两种树一共有180棵。
(二)学习新课
1.改变上题的条件和问题,使之成为例6。
果园里桃树和杏树一共有180棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?
(1)学生审题,将复习题的图改为例6。
(2)思考:
①这道题求什么?与以前学习的应用题有什么不同?(有两个未知数。)
②怎样设未知数呢?
如果设桃树有x棵,那么杏树就有3x棵;
比较哪种设法比较简便?为什么?
易解。
将线段图中的问号改为x或3x。
(3)根据哪个条件找数量间的相等关系?
根据桃树和杏树一共有180棵,找等量关系。
(4)列方程,解方程,
解:设桃树有x棵。或:
(5)检验,答题。
教师:检验时,可以把得数代入题目,看是否符合已知条件。
学生进行检验。
①看桃树和杏树一共的棵数是否是180棵,
45+135=180(棵)
②看杏树棵数是否是桃树的3倍,
135÷45=3
答:桃树有45棵,杏树有135棵。
2.试做:
果园里杏树比桃树多90棵,杏树的棵数是桃树的3倍,桃树和杏树各有多少棵?
(1)思考:
此题与例6相比,哪些地方相同?哪些地方不同?数量关系是怎样的?(倍数关系相同,不同点是把两种树的和改成了两种树的差。)
数量关系为:
(2)试做:
检验:
①135-45=90;
②135÷45=3。
答:桃树有45棵,杏树有135棵。
3.小结:
思考讨论:
(1)我们今天学习的应用题有什么特点?(今天学习的应用题,都是已知两种数量的倍数关系以及它们的和或差,求这两种数量各是多少。)
(2)这样的应用题,我们是怎样解答的?(一般根据倍数关系,设一倍数为x,另一个数用含有字母的式子表示;再根据这两种量的和或差,找出数量之间的相等关系,就可列出方程,并解方程,求出得数;最后还要把得数代入题目中去,看是否符合已知条件。)
(三)巩固反馈
1.根据条件,设未知数。
(1)快车的速度是慢车的2倍。
设()为x千米,那么()为2x千米;
(2)男生人数是女生的1.2倍。
设()为x人,那么( )为1.2x人;
(3)大米的重量是面粉的3.5倍。
设()为x千克,那么()为3.5x千克;
(4)父亲的年龄是女儿的4倍。
设女儿的年龄为x岁,那么父亲的年龄为()岁;
(5)甲桶油的重量是乙桶的1.5倍,设乙桶油的重量为()千克,那么甲桶油的重量为()千克。
2.独立解答P118“做一做”,P119:4。
解答后讲解数量间的相等关系。
做一做:
根据“四年级、五年级共有学生330人”,得:
四年级人数+五年级人数=四、五年级人数和
↓ ↓ ↓
1.2x x 330
P119:4。
根据“如果再往乙袋里装5千克大米,两袋就一样重了。”可知乙袋比甲袋少5千克,得:
甲袋重量-乙袋重量=乙袋比甲袋少的重量
↓ ↓ ↓
1.2x x 5
3.将上题中的“如果再往乙袋里装5千克大米”改为“甲袋给乙袋5千克”应怎样解答?
画图理解:甲袋比乙袋多多少?
从图上看出甲袋比乙袋多5×2=10(千克)
根据:甲袋重量-乙袋重量=甲袋比乙袋多的重量
↓ ↓ ↓
1.2x x 10
列方程:1.2x-x=10。
4.课后作业:P119:1,2,3。
课堂教学设计说明
列方程解含有两个未知数的应用题,学生第一次接触,因此设哪个未知数为x是本节课的难点。为了分散这一难点,在复习中采取填空的形式,引导学生根据倍数关系设未知数。在新授中,通过对两种设法的比较、分析,得出设一倍数为x比较简便。在练习中又设计了专项练习,学生在思考、讨论中,透彻地理解并掌握了这一规律。
例6 学习了列方程解和倍应用题,改变其中一个条件,变成差倍应用题,着重引导学生比较两题的异同。讨论解答方法哪些地方相同,哪些地方不同,既可提高教学效率,又能将学生的注意力引导到比较两题的异同上面来,有助于形成两种解法的逻辑关系。
在学习了和倍、差倍应用题之后
,及时引导学生找出这两类应用题的特点,并根据题目的特点总结出解题规律。既使学生掌握了解题方法,又提高了学生抽象概括的能力。板书设计
列方程解应用题