中考数学压轴题附答案

  中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。下面是CN人才小编收集整理的2017年中考数学压轴题附答案,欢迎阅读参考!~

2017年中考数学压轴题附答案

  训练目标

  熟悉题型结构,辨识题目类型,调用解题方法;

  书写框架明晰,踩点得分(完整、快速、简洁)。

  题型结构及解题方法

  压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

  考查要点 常考类型举例 题型特征 解题方法

  问题背景研究 求坐标或函数解析式,求角度或线段长 已知点坐标、解析式或几何图形的部分信息 研究坐标、解析式,研究边、角,特殊图形。

  模型套路调用 求面积、周长的函数关系式,并求最值 速度已知,所求关系式和运动时间相关 分段:动点转折分段、图形碰撞分段;

  利用动点路程表达线段长;

  设计方案表达关系式。

  坐标系下,所求关系式和坐标相关 利用坐标及横平竖直线段长;

  分类:根据线段表达不同分类;

  设计方案表达面积或周长。

  求线段和(差)的最值 有定点(线)、不变量或不变关系 利用几何模型、几何定理求解,如两点之间线段最短、垂线段最短、三角形三边关系等。

  套路整合及分类讨论 点的存在性 点的存在满足某种关系,如满足面积比为9:10 抓定量,找特征;

  确定分类;.

  根据几何特征或函数特征建等式。

  图形的存在性 特殊三角形、特殊四边形的存在性 分析动点、定点或不变关系(如平行);

  根据特殊图形的判定、性质,确定分类;

  根据几何特征或函数特征建等式。

  三角形相似、全等的存在性 找定点,分析目标三角形边角关系;

  根据判定、对应关系确定分类;

  根据几何特征建等式求解。

  答题规范动作

  试卷上探索思路、在演草纸上演草。

  合理规划答题卡的答题区域:两栏书写,先左后右。

  作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。

  作答要求:框架明晰,结论突出,过程简洁。

  23题作答更加注重结论,不同类型的作答要点:

  几何推理环节,要突出几何特征及数量关系表达,简化证明过程;

  面积问题,要突出面积表达的方案和结论;

  几何最值问题,直接确定最值存在状态,再进行求解;

  存在性问题,要明确分类,突出总结

  20分钟内完成。

  实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称:

  中考数学难点突破

  1、图形运动产生的面积问题

  2、存在性问题

  3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)

  4、中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)

  一、图形运动产生的面积问题

  知识点睛

  研究_基本_图形

  分析运动状态:

  ①由起点、终点确定t的范围;

  ②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.

  分段画图,选择适当方法表达面积.

  二、精讲精练

  已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.

  (1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.

  (2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.

  1题图 2题图

  如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

  (1)填空:∠AHB=____________;AC=_____________;

  (2)若,求x.

  如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).

  (1)t为何值时,点Q' 恰好落在AB上?

  (2)求S与t的函数关系式,并写出t的取值范围.

  (3)S能否为?若能,求出此时t的值;

  若不能,请说明理由.

  如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.

  (1)当t=_____s时,点P与点Q重合;

  (2)当t=_____s时,点D在QF上;

  (3)当点P在Q,B两点之间(不包括Q,B两点)时,

  求S与t之间的函数关系式.

  如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

  (1)填空:点B的坐标为________,点C的坐标为_________.

  (2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.

  如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.

  (1)求M,N的坐标.

  (2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.

  二、二次函数中的存在性问题

  一、知识点睛

  解决“二次函数中存在性问题”的基本步骤:

  ①画图分析.研究确定图形,先画图解决其中一种情形.

  ②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.

  ③验证取舍.结合点的运动范围,画图或推理,对结果取舍.

  二、精讲精练

  如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.

  抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.

  (1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;

  (2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.

  如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,

  OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

  (1)若抛物线经过A、B两点,求该抛物线的解析式:______________;

  (2)若点M是直线AB上方抛物线上的一个动点,

  作MN⊥x轴于点N.是否存在点M,使△AMN

  与△ACD相似?若存在,求出点M的坐标;

  若不存在,说明理由.

  已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

  抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.

  三、二次函数与几何综合

  一、知识点睛

  “二次函数与几何综合”思考流程:

  整合信息时,下面两点可为我们提供便利:

  ①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;

  ②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.

  二、精讲精练

  如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

  (1)求抛物线的解析式.

  (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?

  若存在,求出点M的坐标;若不存在,请说明理由.

  如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.

  (1)求抛物线的解析式;

  (2)点E在抛物线的对称轴上,点F在抛物线上,

  且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.

  如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

  (1)求该抛物线的解析式;

  (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,

  点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.

  已知,抛物线经过A(-1,0),C(2,)两点,

  与x轴交于另一点B.

  (1)求此抛物线的解析式;

  (2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,

  并直接写出自变量x的取值范围.

  已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).

  (1)求抛物线的解析式;

  (2)若点P在抛物线上运动(点P异于点A),

  ①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;

  ②如图2,当∠PCB =∠BCA时,求直线CP的解析式.

  四、中考数学压轴题专项训练

  1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3

,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

  △OPQ与直角梯形OABC重叠部分的面积为S.

  (1)求经过O,A,B三点的抛物线解析式.

  (2)求S与t的函数关系式.

  (3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

  2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

  (1)求抛物线的解析式及点D的坐标.

  (2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标.

  (3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由.

  3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.

  (1)请直接写出C,D两点的坐标,并求出抛物线的解析式;

  (2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

  (3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

  4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.

  (1)求抛物线的解析式;

  (2)点K为线段AB上一动点,过点K作x轴的垂线,交直

  线CD于点H,交抛物线于点G,求线段HG长度的最大值;

  (3)在直线l上取点M,在抛物线上取点N,使以A,C,M,

  N为顶点的四边形是平行四边形,求点N的坐标.

  5.(11分)如图,在平面直角坐标系中,直线与

  抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.

  (1)求抛物线的解析式.

  (2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.

  ①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.

  ②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,

  正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,

  直接写出对应的点P的坐标.

  6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为

  (1,0),直线AB交抛物线C1于另一点C.

  (1)求点C的坐标;

  (2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值;

  (3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

相关文章

宝宝晚上睡觉不安稳是为什么

宝宝睡觉不安稳原因一:肚子饿宝宝人小肚子也小,宝宝胃的大小,大概就跟他们的小拳头一样。小宝宝的消化系统只适合少量多餐,所以在刚出生的几个月,晚上至少每隔3到4小时就需要喂食。随着宝宝一天天长大,他可能...
资料大全2012-02-07
宝宝晚上睡觉不安稳是为什么

碑文怎么写 -

碑文 胡军,男,(1889~1935),红军某师军需处长,因过雪山过度寒冷,壮烈牺牲,碑文怎么写。 他为了别人的温暖, 把棉衣让给了战友。 他为了别人能走出雪山, 自己却永远的留在了山上。 他完全可以...
资料大全2015-05-09
碑文怎么写 -

材料成型及控制工程专业的前景和发展方向

材料成型及控制工程专业的前景和发展方向各位考生在填报志愿的时候,往往会考虑专业的就业前景,大家对自己感兴趣的专业都想了解其就业前景,这毕竟是影响一生的选择,今天学校大全给大家分享材料成型及控制工程专业...
资料大全2017-06-09
材料成型及控制工程专业的前景和发展方向

青岛五险一金缴纳比例计算器

下面关于青岛五险一金缴纳比例计算器材料是由unjs小编收集整理的,大家可尽情浏览借鉴,希望能帮到大家。2016年青岛五险一金最低标准如下:(1)2016年青岛社保基数参保人员2016年度社会保险缴费基...
资料大全2017-02-08
青岛五险一金缴纳比例计算器

《完美国际》1~10级任务指南妖族 -电脑资料

人族任务妖族任务羽族任务任务名称子任务名称等级要求任务地点/NPC金钱经验元神物品奖励初入世界初露锋芒1接引者457520☆巨铁锤、☆星月轮二选一得胜而归1直接开启0初入万化城无1直接开启305020...
资料大全2014-07-03
《完美国际》1~10级任务指南妖族 -电脑资料

比喻句

1、庄稼汉们站在地头,望着这片黄澄澄像狗尾巴的稻谷,心里像酿了蜜一样的甜。2、钱钟书围城里说:打呼噜象放长线的风筝。3、这葡萄别说吃了,看一眼也舒服半天,要是吃它一串,准要甜几天哩!4、那雪,就如白玉...
资料大全2015-08-04
比喻句