高考数学考试大纲
一、考试范围和要求
数学考试旨在测试中等职业学校学生的数学基础知识、基本技能、基本方法、运算能力、逻辑思维能力、空间想象能力,以及运用所学的数学知识、思想及方法分析问题和解决问题的能力。
考试内容包括代数、三角、平面解析几何、立体几何、概率与统计初步五部分。
考试中允许使用函数型计算器。推荐使用CASIO fx一82MS 函数型计算器、北雁牌CZ-1206H 函数型计算器.
考试内容的知识要求和能力要求作如下说明。
基本技能:掌握计算技能,掌握计算工具使用技能和数据处理技能。
基本方法:掌握待定系数法、配方法、坐标法。
运算能力:理解算理,会根据概念、定义、定理、法则、公式进行正确计算和变形,能正确分析条件,寻求合理、简捷的运算方法。
逻辑思维能力:能依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题有条理地进行思考、判断、推理和求解,并能够准确、清晰、有条理地进行表i针对不同的问题(需求),会选择合适的模型(模式)。
空间想象能力:能依据文字、语言描述或较简单的几何体及其组合,想象相应的空间图形,能够在基本图形中找出基本元素及其位置关系,或根据条件画出正确图形,并能对图形进行分解、组合、变形。
分析问题和解决问题的能力:能阅读、理解对问题进行陈述的材料,能综合应用所学数学知识、数学思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。
第一部分 代 数
1.集合
集合的概念,集合的表示法,集合之间的关系,集合的基本运算,子集与推出的关系。
要求:
(1)理解集合的概念,掌握集合的表示法,掌握集合之间的关系(子集、真子集、相等),掌握集合的交、并、补运算。
(2)理解符号的含义,并能用这些符号表示元素与集合、集合与集合、命题与命题之间的关系。
(3)理解子集与推出的关系,能正确地区分充分、必要、充要条件。
2.方程与不等式
配方法,一元二次方程的解法,实数的大小,不等式的性质与证明,区间,含有绝对值的不等式的解法,一元二次不等式的解法。
要求:
(1)掌握配方法,会用配方法解决有关问题。
(2)会解一元二次方程。
(3)理解不等式的性质,会用比较法证明简单不等式。
(4)会解一元一次不等式(组)。
(5)会解形如 |ax+b| I≥c或|ax+6 l
(6)会解一元二次不等式,会用区间表示不等式的解集。
(7)能利用不等式的知识解决有关的实际问题。
3.函数
函数的概念,函数的表示方法,函数的单调性、奇偶性。
分段函数,一次函数、二次函数的图像和性质。
函数的实际应用。
要求:
(1)理解函数的概念及其表示法,会求一些常见函数的定义域。
(2)理解函数符号厂f(x)的含义,会由厂f(x)的表达式求出厂f(ax+b)的表达式。
(3)理解函数的单调性、奇偶性的定义,掌握增函数、减函数及奇函数、偶函数的图像特征。
(4)理解分段函数的概念。
(5)理解二次函数的概念,掌握二次函数的图像和性质。
(6)会求二次函数的解析式,会求二次函数的最值。
(7)能运用函数知识解决简单的实际问题。
4.指数函数与对数函数
指数(零指数、负整指数、分数指数)的概念,实数指数幂的运算法则。
指数函数的概念,指数函数的图像和性质。
对数的概念,对数的性质与运算法则。
对数函数的概念,对数函数的图像和性质。
要求:
(1)掌握实数指数幂的运算法则,能利用计算器求实数指数幂的值。
(2)理解对数的概念,理解对数的性质和运算法则,能利用计算器求对数值。
(3)理解指数函数、对数函数的概念,掌握其图像和性质。
(4)能运用指数函数、对数函数的知识解决有关问题。
5.数列
数列的概念。
等差数列及其通项公式,等差中项,等差数列前 n 项和公式。
等比数列及其通项公式,等比中项,等比数列前 n 项和公式。
要求:
(1)理解数列概念和数列通项公式的意义。
(2)掌握等差数列和等差中项的概念,掌握等差数列的通项公式及前 n 项和公式
(3)掌握等比数列和等比中项的概念,掌握等比数列的通项公式及前 n 项和公式。
(4)能利用等差数列和等比数列的知识,解决简单的实际问题。
6.平面向量
向量的概念,向量的线性运算。
向量直角坐标的概念,向量坐标与点坐标之间的关系,向量的直角坐标运算,中点式,距离公式。
向量夹角的定义,向量的内积,两向量垂直、平行的条件。
要求:
(1)理解向量的概念,会正确进行向量的线性运算(加法、减法和数乘向量)。
(2)掌握向量的直角坐标及其与点坐标之间的关系,掌握向量的直角坐标运算。
(3)掌握两向量垂直、平行的条件。
(4)掌握线段中点坐标计算公式、两点间的距离公式。
(5)掌握向量夹角的定义,向量内积的定义、性质及其运算,掌握向量内积的直角坐标运算。
(6)能利用向量的知识解决相关问题。
7.逻辑用语
命题、量词、逻辑联结词。
要求:
(1)了解命题的有关概念。
(2)了解量词的有关概念,理解全称量词和存在量词的意义,并会用相应的符号表示。
(3)理解逻辑联结词“且”、“或”、“非”的意义。
(4)理解符号的含义。
8.排列、组合与二项式定理
分类计数原理与分步计数原理。
排列的概念,排列数公式。
组合的概念,组合数公式及性质。
二项式定理,二项式系数的性质。
要求:
(1)掌握分类计数原理及分步计数原理,会用这两个原理解决一些较简单的问题。
(2)理解排列和排列数的意义,会用排列数公式计算简单的排列问题。
(3)理解组合和组合数的意义及组合数的性质,会用组合数公式计算简单的组合问题。
(4)理解二项式定理,理解二项式系数的性质。
第二部分 三 角
角的概念的推广,弧度制。
任意角三角函数(正弦、余弦和正切)的概念,同角三角函数的基本关系式。
三角函数诱导公式。
正弦函数、余弦函数的图像和性质,正弦型函数的图像和性质。
已知三角函数值求指定范围内的角。
和角公式,倍角公式。 。
正弦定理、余弦定理及三角形的面积公式。
三角计算及应用。
要求:
(1)了解终边相同的角的集合。
(2)理解弧度的意义,掌握弧度和角度的互化。
(3)理解任意角三角函数的定义,掌握三角函数在各象限的符号,掌握同角三角函数间的基本关系式。
(4)会用诱导公式化简三角函数式。
(5)掌握正弦函数的图像和性质,理解余弦函数的图像和性质。
(6)掌握正弦型函数的图像和性质(定义域、值域、周期性),会用“五点法”画正弦型函数的简图。
(7)会用计算器求三角函数值,会由三角函数(正弦和余弦)值求出指定范围内的角。
(8)掌握和角公式与倍角公式,会用它们进行计算、化简和证明。
(9)会求函数y=f(sinx)的最值。
(10)掌握正弦定理和余弦定理,会根据已知条件求三角形的边、角及面积。
(11)能综合运用三角知识解决简单的实际应用问题。
第三部分 平面解析几何
直线的方向向量与法向量的概念,直线的点向式方程及点法式方程。
直线斜率的概念,直线的点斜式方程及斜截式方程。
直线的一般式方程。
两条直线垂直与平行的条件,点到直线的距离。
线性规划问题的有关概念,二元一次不等式(组)表示的区域。
线性规划问题的图解法。
线性规划问题的实际应用。
圆的标准方程和一般方程。
待定系数法。
椭圆的标准方程和性质。
双曲线的标准方程和性质。
抛物线的标准方程和性质。
要求:
(1)理解直线的方向向量和法向量的概念,掌握直线的点向式方程和点法式方程。
(2)了解直线的倾斜角和斜率的概念,会求直线的斜率,掌握直线的点斜式方程
截式方程以及一般式方程。
(3)会求两曲线的交点坐标。
(4)会求点到直线的距离,掌握两条直线平行与垂直的条件。
(5)了解线性约束条件、目标函数、线性目标函数、线性规划的概念。
(6)掌握二元一次不等式(组)表示的区域。
(7)掌握线性规划问题的图解法,并会解决简单的线性规划应用问题。
(8)掌握圆的标准方程和一般方程以及直线与圆的位置关系,能灵活运用它们解决有
关问题。
(9)了解待定系数法的概念,会用待定系数法解决有关问题。
(10)掌握圆锥曲线(椭圆、双曲线、抛物线)的概念、标准方程和性质,能灵用它们解决有关问题。
第四部分 立体几何
多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。
柱体、锥体、球的表面积和体积公式。
平面的表示法,平面的基本性质。
空间直线与直线、直线与平面、平面与平面的位置关系。
直线与平面。平面与平面的两种位置(平行、垂直)关系的判定与性质。
点到平面的距离、直线到平面的距离、平行平面间的距离的概念。
异面直线所成角、直线与平面所成角、二面角的概念。
要求:
(1)了解多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。
(2)掌握柱体、锥体、球的表面积和体积公式,能用公式计算简单组合体的表面积和体积。
(3)了解平面的基本性质。
(4)理解空间直线与直线、直线与平面、平面与平面的位置关系。
(5)理解直线与直线、直线与平面、平面与平面的两种位置(平行、垂直)关系的判定与性质。
(6)了解点到平面的距离、直线到平面的距离、平行平面间的距离的概念,并会解决相关的距离问题。
(7)了解异面直线所成角、直线与平面所成角、二面角的概念,并会解决相关的简单问题。
第五部分 概率与统计初步
样本空间、随机事件、基本事件、古典概型、古典概率的概念,概率的简单性质。
直方图与频率分布,总体与样本,抽样方法(简单的随机抽样、系统抽样、分层抽样)。
总体均值,标准差,用样本均值、标准差估计总体均值、标准差。
要求:
(1)了解样本空间、随机事件、基本事件、古典概型、古典概率的概念及概率的简单性质,会应用古典概率解决一些简单的实际问题。
(2)了解直方图与频率分布,理解总体与样本,了解抽样方法。
(3)理解总体均值、标准差,会用样本均值、标准差估计总体均值、标准差。
(4)能运用概率、统计初步知识解决简单的实际问题。
二、试卷结构
1. 试题内容比例
代数 约50%
三角 约15%
平面解析几何 约20%
立体几何 约10%
概率与统计初步 约5%
2. 试题题型比例
选择题 约50%
填空题、解答题(包括证明题) 约50%
3. 试题难易程度比例
基础知识 约50%
灵活掌握 约30%
综合运用 约20%
[2015高考数学考试大纲]