课题一:数的产生 十进制计数法
课题一:数的产生 十进制计数法
课题一:数的产生 十进制计数法教学内容:教科书第36—38页的数的产生、十进制计数法和数的读法,练习九的第1—4题。
教学目的:
1、使学生知道的数的产生。
2、认识自然数和整数。
3、使学生认识亿级的数和计数单位“亿”、“十亿”、“亿”、“千亿”.
4、掌握千亿以内的数位顺序和十进制计数法,会根据数级正确地读千亿以内的数。
教学重点:亿级的数和计数单位
教学难点:根据数级正确地读千亿以内的数
教具准备:教科书第36页的教学挂图
教学过程:
1、教学数的
产生(1).数的产生
教师:我们已经学习了三年半数学,每天都要和数打交道,这些数究竟是怎样产生的呢?
教师说明:很久以前,人们在生产劳动中就有了计数的需要。例如,人们出去打猎的时候,要数一数出去了多少人,拿了多少件武器,回来的时候,要数一数捕获了多少只野兽等等,这样就产生了数。
(2). 记数符号、计数方法的产生。
教师出示第36页的教学挂图让学生看图,进一步说明:在远古时代人们虽然有计数的需要,但是开始还不会用一、二、三……这些数词来物体的个数。只知道“同样多”、“多”或“少”。那时人们只能借助一些其他物品,如在地上摆小石子,在木条上刻道、在绳上打结等方法来计数。比如,出去放牧时,每放出一只羊,就摆一个石子,一共出去了多少只车,就摆多少个小石子,放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。再如,出去打猎时,每拿一件武器和木棒上刻的道一一对应起来,看武器和刻道是不是同样多,如果是,就说明武器没有丢失。结绳计数的道理也是这样。这些计数的基本思想就是把要数的实物和用来计数的实物一个对一个地对应起来,也就是现在所说的一一对应。以后,随着语言的发展逐浙出现了数词,随着文字的发展又发明了一些记数符号,也就是最初的数学。各个国家和地区的记数符号是不同的。例如,巴比伦数字就是用一个类似三角形的符号来表示1,两个这样的符号表示2,三个这样的符号并排表示3,……九个这样的符号表示9,10就将这个符号横放来表示(板书出巴比伦数字)。中国数字用一竖表示1,两竖表示2,……五竖表示5,6就用一横加一竖来表示,依此类推7就用一横加竖来表示,……9就用一横加四竖来表示(在巴比伦数字下面对应地板书出中国数字)。除此之外,还有罗马数字、印度数字和阿拉伯数字(在中国数字下面对应地板书出罗马数字)。
巴比伦数字:
中国数字:
罗马数字:Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ
阿拉伯数字,其实并不是阿拉伯人发明的,而是由印度人发明的,公元八世纪前后,由印度传入阿拉伯,公元十二世纪又从阿拉伯传入欧洲,人们就误认为这些数字是阿拉伯人发明的,后来就叫做“阿拉伯数学”。随着社会的发展,人们的交流也越来越多,但各个地区数学不同,交流起来很不方便,以后就逐渐统一成现行的阿拉伯数字(对应着上面,板书:1、2、……9)。后来人类对数的认识逐渐增加,数认得也越来越大,如果每一个数都用不同的数字来表示,很不方便,也没有必要,这样就产生了进位制。古代十进制,还有十二进制、六十进制等等。由于十进制计数比较方便,以后逐浙统一采用十进制。经过很长时间,才产生了像现在这样完整的计数方法,这就是我们下面要讲的“十进制计数法”。(板书课题:十进制计数法)
2、数字十进制计数法
А.复习
(1)说出亿以内的数的计数单位。(按数位顺序板书出来)
( 2)回答下面的问题:
①10个一是多少?10个十是多少?……10个千万是多少?
②亿以内每相邻两个单位之间的关系是怎样的?
В .数学十进制计数法
(1)教师:我们已经学习过亿以内的数,在日常生活和生产中,还经常用到比亿大的数。例如,我国人口十二亿,世界人口50亿等。这些数都比亿大,从一亿开始还可以继续数下去,今天我们就来学比亿大的数。
(2)用算盘帮助数数认识十亿、千亿。
让学生在算盘上拨上一亿,然后一亿一亿地数,一直数到九亿,再拨上一亿。
提问:“九亿再加上一亿是多少?亿位满十要怎样?”
认识十个一亿是十亿,并让学生回答“十亿”应板书在什么位置。
板书:“十亿”(写在刚才板书的亿位的左边)。
用同样的方法,完成对百亿、千亿的认识,分别板书:百亿、千亿。
提问:“个、十、百、千、万……亿都要用来计数的,叫什么?”(计数单位)
指出:十亿、百亿、千亿也是计数单位。
提问:“到现在我们一共学了哪些计数单位?”
教师把板书出的计数单位加上横线和竖线,并告诉学生还有比千亿大的计数单位,由于不常用,暂时不学,因此在千亿的左面用省略号“……”表示还其他计数单位。制成下表:
提问:每相邻两个计数单位之间的关系是什么?(每相邻两个单位之间的进率是10,即十进关系。)
说明像这种“每相邻两个单位之间的进率都是10”的计数方法叫做“十进制计数法”。
(3)认识数位和数位顺序表。
①说明写数时,要用尽可能少的符号来表示,这些符号叫做数字。
提问:“我们学过了哪些数学?”(1、2、3、4、5、6、7、8、9、0)
说明这些数学叫阿拉伯数学。
② 说明写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。再说明数位的作用,有了数位以后,由于一个数字在不同的数位上表示的数的大小不同,所以用十个阿拉伯数字就可以表示出任意大的数。
③ 让学生说说亿以内的数位顺序表是怎样的,教师板书出来。然后引导学生把亿以内的数位顺序表扩展到“千亿”位,并告诉学生还有比千亿大的.数,由于不常用,暂时不学,因此在数位顺序表后面用省略号“……”表示还有其他数位。如下表:
使学生明确右起第五位是万位,第九位是亿位。
引导学生对数位分级。先让学生说出右起第一位至第四位是什么数,第五位到第八位是什么级,再进一步说明第九位到第十二位是亿级。同时说明数位分级的作用,数位多了,一位一位地读不方便,通过分级可以很方便地读数。
在已写出的数位顺序表上接着板书:个级、万级、亿级、制成表,并把它和计数单位表连接起来,如下表:
让学生观察数位顺序表,看一看个级、万级、亿级的异同点;都是四个数位;每一级从右边第二个数位起,都是十、百、千,但万级多了个“万”字,亿级多了个“亿”字;个级第一位是位,万级第一位是万位,亿级每一位是亿位。让学生看课本第37页。
(4)巩固练习。
完成第38页“做一做”的第1题,练习九的第1题。
3、教学亿级数的读法
(1) 复习。
读出下面各数:
50000 106000 40030500
指名学生读,并说一说读亿以内数的方法。
(2)教学例1。
说明亿级数的读法与万级数的读法类似。然后在上面几个数的后面各加4个0,变成例1中的数,并把它们贴在制好的数位表上。如下图:
千 百 十 亿 千 百 十 万 千 百 十 个
亿 亿 亿 万 万 万
位 位 位 位 位 位 位 位 位 位 位 位
5 0 0 0 0 0 0 0 0
1 0 6 0 0 0 0 0 0 0
4 0 0 3 0 5 0 0 0 0 0 0
让同桌同学互相读给对方听,再指名读,并说出要怎样读。着重说一说要先读哪一级,再读哪一级;亿级怎样读?
(3)引导学生总结多位数的读法法则。
提问:“含有亿级、万级和个级的数,先读哪一级,再读哪一级,最后读哪一级”
“怎样读亿级、万级的数?”
“在什么位置的‘0’不读?”
“在什么位置的‘0’应该读?读几个0?”
教师根据学生的回答,板书出多位数的读法法则。
(1)从高位起,一级一级地往下读;
(2)读亿级或万级的数时,要按照个级的数的读法来读,再在后面加上一个“亿”字或“万”字。
(3)每级末尾的0都不读,其他数位有一个0或连续几个0都只读一个“零”。
4.看课本第38页,并完成“做一做”中的第2题。
5.巩固练习。
(1)做练习九的第2题。
一组一组地读,读完后,让学生结合一组说一下个级、万级、亿级的数的读法有什么相同点和不同点,使学生体会到:万级的数要按照个级的数的读法来读,只是要在后面加一个“万”字,亿级的也要按照个级的数的读法来读,再在后面加一个“亿”字。
(2)做练习九的第3题。
每读一个数,都要注意提醒学生先分级,搞清是哪一级的数,各是几位数,最高位是什么位,再按照多位数的法则一级一级地读出来。
(3)做练习九的第4题。
先读给同桌同学听,然后,教师指名读给全班同学听,集体订正。
课题一:数的产生 十进制计数法