乘法分配律的应用

乘法分配律的应用

教学目标

(一)使学生学会用乘法分配律进行简算,提高计算能力.

(二)培养学生灵活运用乘法运算定律进行计算的习惯.

教学重点和难点

继续加深对乘法分配律的理解,能比较熟练地应用运算定律进行简算是教学的重点;学生对乘法分配律与乘法结合律的应用容易混淆,特别是反向应用乘法分配律是学习的难点.

教学过程设计

(一)复习准备

1.口算:

73+27 138×100 8×9×125

100-64 64×1 (4+40)×25

2.在□里填上适当的数.

302=300+□ 2003=2000+□

(300+2)×43 (2000+3)×14

=300×□+2×□ =2000×□+□×□

订正时说明根据什么填数.

(二)学习新课

我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)

1.创设情境,激发学生学习积极性.

出示102×( ).

请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.

同学们踊跃举手,如填上48,老师会迅速得出4896,填上72,得出7344……

老师就是根据乘法分配律进行简算的.

2.教学例6:用简便方法计算.

(1)计算102×43.

这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一做,对比一下,找出哪种方法简便.

在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.

板书:102×43

=(100+2)×43

=100×43+2×43

=4300+86

=4386

反馈:

(1)在括号里填上适当的数.

3001×84=( )×84+( )×84

92×203=92×(200+□)=92×200+92×□

(2)计算102×24.

订正时说明怎样简算的?根据是什么.

(3)计算9×37+9×63.

启发提问:

①这类题目的结构形式是怎样的?有什么特点?

②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?

在学生充分讨论的基础上,师板书:

9×37+9×63

=9×(37+63)

=9×100

=900

师生共同总结:

①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.

③另外两个不同的因数,是两个能凑成整十、整百、整千的加数.

反馈:计算下面各题.

①(80+8)×25 ②32×(200+3) ③35×37+65×37

订正时说明是怎样应用运算定律简算的.

④38×29+38

讨论:这个题符合乘法分配律的结构形式吗?从乘法的意义上考虑,你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算?

小结 我们在运用定律进行简算时,一定要认真审题,观察式子的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算.

(三)巩固反馈

1.师生对出题.

我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式.但这两个算式合起来要能应用乘法运算定律简算.

生:出72×46.

师:加上28×46.

板书:72×46+28×46

生计算:=(72+28

)×46

=100×46

=4600

生:我出49×180.

师:加上49×20.

板书:49×180+49×20

生计算:=49×(180+20)

=49×200

=9800

生:我出63×49.

师:加上37×51.

板书:63×49+37×51

提问:这题能简算吗?什么地方错了?应怎样改?

启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.

共同修改成:63×49+37×49或63×49+63×51.

2.根据乘法分配律把相等的式子用“=”连接起来.

23×12+23×88 23×(12+88)

(35+45)×12 35×45+45×12

(11×25)×4 11×4+25×4

25×(4+40) 25×4+25×40

讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?

在讨论基础上得出:

第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的`因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.

第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.

(四)作业

练习十四第5~10题.

课堂教学设计说明

前一节课学生通过推导,已初步理解和掌握了乘法分配律,但要使学生切实理解乘法分配律,必须经过反复地练习,本节课就是解决如何应用乘法分配律使计算简便,在应用的过程中,进一步加深对乘法分配律的理解.

新课分为两部分.

第一部分通过师生对出题,激发学生积极性,为应用乘法分配律做铺垫.

第二部分是教学例6,用简便方法计算,通过老师的启发,学生经过观察,讨论找出题目的特点,总结出简便运算的方法.

本节课的练习分两个层次.

一个层次是讲中练,边讲边练,并在练习中不断变换题目形式,提高学生灵活运用运算定律的能力.

第二个层次是总结性的综合练习.通过师生对出题使学生深刻理解乘法分配律的内涵,抓住关键,进行简算;同时对不符合乘法分配律的题目,经过讨论,修正过来,使学生对运算规律理解得更透彻.

板书设计

乘法分配律的应用

302=300+□

(300+2)×43=300×□+2×□

(2000+3)×14=2000×□+□×□

(80+8)×25

35×37+65×37

32×(200+3)

=38×(29+1)

=38×30

=1140

例6

(1)102×43

=(100+2)×43

=100×43+2×43

=4300+86

=4386

(2)9×37+9×63

=9×(37+63)

=9×100

=900

23×12+23×88= 23×(12+88)

12

(35+45)×12 35× +45×12

+

(11 25)×4 11×4+25×4

25×(4+40)= 25×4+25×40

特点

1.× + ×

2

相关文章

密集症的解析和克服方法

密集物体恐惧症其真正恐惧的原因是因为人们会对密集物体发生本能的恐惧心理,所谓的莲蓬图正是利用这一点吓到不少人,图片本身并不恶心,只是一种心理反应而已,类似于有人恐高症,有人有尖锐物体恐惧症等。轻度的可...
资料大全2019-03-01
密集症的解析和克服方法

WP博客与 同步插件wptsina -电脑资料

网上的博客网站推广提高网站流量的各种方法中,很多作者都提到了利用微博推广的方法,而且效果也很明显,WP博客与 同步插件wptsina。博客吧本次介绍一款与 同步更新的WordPress博客插件wp-t...
资料大全2011-09-03
WP博客与 同步插件wptsina -电脑资料

让孩子养成阅读的好习惯的8种方法

1.全家人一起读书。要想让孩子从小就爱上阅读,把读书当作一种生活状态,最关键的是要在家庭中营造读书的氛围。专家认为,孩子人格的塑造以及行为习惯的培养,都是在模仿认同与游戏中完成的。他们的语言理解能力较...
资料大全2016-06-01
让孩子养成阅读的好习惯的8种方法

投资入股方案

为确保事情或工作顺利开展,时常需要预先制定一份周密的方案,方案的内容和形式都要围绕着主题来展开,最终达到预期的效果和意义。那么我们该怎么去写方案呢?以下是小编整理的投资入股方案,欢迎大家借鉴与参考,希...
资料大全2011-07-07
投资入股方案

人体体温多少度正常

发烧是一个很常见的问题,人体在出现发烧的时候,体温都是会出现偏高的现象,那人体体温多少度正常呢,在对这类问题上也是很多人不了解的,人体的体温也是有着一个范围,超出这个范围,人体就很容易出现一些问题,所...
资料大全2013-08-02
人体体温多少度正常

防旱抗旱的最佳方案

为了确保事情或工作有效开展,通常会被要求事先制定方案,方案是阐明行动的时间,地点,目的,预期效果,预算及方法等的书面计划。那要怎么制定科学的方案呢?下面是小编为大家整理的防旱抗旱的最佳方案,欢迎大家分...
资料大全2017-06-08
防旱抗旱的最佳方案