等差数列的证明
等差数列的证明
等差数列的证明1 三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c), b^2(c+a), c^2(a+b) 成等差数列
等差:an-(an-1)=常数 (n≥2)
等比:an/(an-1=常数 (n≥2)
等差:an-(an-1)=d或2an=(an- 1)+(an+1),(n≥2)
等比:an/(an-1)=q或an平方=(an-1)*(an+1)(n≥2).
2
我们推测数列{an}的'通项公式为an=5n-4
下面用数学规纳法来证明:
1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立
2)假设当n≤k时,推测是成立的,即有aj=5(j-
1)-4,(j≤k)则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2
于是S(k+1)=a(k+1)+Sk
而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8
即:(5k-8)*[a(k+1)+Sk]-(5k+2)Sk=-20k-8
所以(5k-8)a(k+1)-10Sk=-20k-8
即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)
所以a(k+1)=5k+1=5(k+1)-4
即知n=k+1时,推测仍成立。
3
在新的数列中
An=S[4n-(4n-4)]
=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)
A(n-1)=S[4(n-1)-4(n-2)]
=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
=4d+4d+4d+4d+4d
=20d(d为原数列公差)
20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。
4
A(n+1)-2An=2(An-2An-1)A(n+1)-2An=3*2^(n-1)两边同时除2^(n+1)得[A(n+1)/2^(n+1)]-An/2^n=3/4即{An/2^n}的公差为3/4An除以2的n次方为首项为1/2公差为3/4的等差数列
5
证明:
an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/2
2an=na1+nan-na1-nan-1+a1+an-1
(n-2)an=(n-1)*(an-1)-a1 (1)
同理
(n-1)*(an+1)=nan-a1 (2)
(1)-(2)
得到
(2n-2)an=(n-1)*(an-1)+(n-1)(an+1)
2an=an-1+an+1
所以an+1-an=an-an-1
所以数列{an}是等差数列
那么你就设直角三角形地三条边为a,a+b,a+2b
于是它是直角三角形得到
a+(a+b)=(a+2b)
所以a+a+2ab+b=a+4ab+4b
化简得a=2ab+3b
两边同时除以b
解得a/b=3 即a=3b
所以三边可以写为 3b ,3b+b 。 3b+2b
所以三边之比为3:4:5
6
设等差数列 an=a1+(n-1)d
最大数加最小数除以二即
[a1+a1+(n-1)d]/2=a1+(n-1)d/2
{an}的平均数为
Sn/n=[na1+n(n-1)d/2]/n=a1+(n-1)d/2
得证