上学期 1.8 充分条件与必要条件

上学期 1.8 充分条件与必要条件

充要条件

教学目标:

(1)正确理解充分条件、必要条件和充要条件的概念;

(2)能正确判断是充分条件、必要条件还是充要条件;

(3)培养学生的逻辑思维能力及归纳总结能力;

(4)在充要条件的教学中,培养等价转化思想.

教学重点难点:关于充要条件的判断

教学用具:幻灯机或实物投影仪

教学过程设计

1.复习引入

练习:判断下列命题是真命题还是假命题(用幻灯投影):

(1)若 ,则 ;

(2)若 ,则 ;

(3)全等三角形的面积相等;

(4)对角线互相垂直的四边形是菱形;

(5)若 ,则 ;

(6)若方程 有两个不等的实数解,则 .

(学生口答,教师板书.)

(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.

置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命题.如何判断其真假的?

答:看 能不能推出 ,如果 能推出 ,则原命题是真命题,否则就是假命题.

对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 是 成立的充分条件,记作 .

2.讲授新课

(板书充分条件的定义.)

一般地,如果已知 ,那么我们就说 是 成立的充分条件.

提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.

(学生口答)

(1)“ ,”是“ ”成立的充分条件;

(2)“三角形全等”是“三角形面积相等”成立的充分条件;

(3)“方程 的有两个不等的实数解”是“ ”成立的充分条件.

从另一个角度看,如果 成立,那么其逆否命题 也成立,即如果没有 ,也就没有 ,亦即 是 成立的必须要有的条件,也就是必要条件.

(板书必要条件的定义.)

提出问题:用“充分条件”和“必要条件”来叙述上述6个命题.

(学生口答).

(1)因为 ,所以 是 的充分条件, 是 的必要条件;

(2)因为 ,所以 是 的必要条件, 是 的充分条件;

(3)因为“两三角形全等” “两三角形面积相等”,所以“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件;

(4)因为“四边形的对角线互相垂直” “四边形是菱形”,所以“四边形的对角线互相垂直”是“四边形是菱形”的必要条件,“四边形是菱形”是“四边形的对角线互相垂直”的充分条件;

(5)因为 ,所以 是 的必要条件, 是 的充分条件;

(6)因为“方程 的有两个不等的实根” “ ”,而且“方程 的有两个不等的实根” “ ”,所以“方程 的有两个不等的实根”是“ ”充分条件,而且是必要条件.

总结:如果 是 的充分条件, 又是 的必要条件,则称 是 的充分必要条件,简称充要条件,记作 .

(板书充要条件的'定义.)

3.巩固新课

例1 (用投影仪投影.)

B

A是B的什么条件

B是 的什么条件

是有理数

是实数

、 是奇数

是偶数

是4的倍数

是6的倍数

(学生活动,教师引导学生作出下面回答.)

①因为有理数一定是实数,但实数不一定是有理

数,所以 是 的充分非必要条件, 是 的必要非充分条件;

② 一定能推出 ,而 不一定推出 ,所以 是 的充分非必要条件, 是 的必要非充分条件;

③ 、 是奇数,那么 一定是偶数; 是偶数, 、 不一定都是奇数(可能都为偶数),所以 是 的充分非必要条件, 是 的必要非充分条件;

④ 表示 或 ,所以 是 成立的必要非充分条件;

⑤由交集的定义可知 且 是 成立的充要条件;

⑥由 知 且 ,所以 是 成立的充分非必要条件;

⑦由 知 或 ,所以 是 , 成立的必要非充分条件;

⑧易知“ 是4的倍数”是“ 是6的倍数”成立的既非充分又非必要条件;

(通过对上述问题的交流、思辩,在争论中得到了正确答案,并加深了对充分条件、必要条件的认识.)

例2 已知 是 的充要条件, 是 的必要条件同时又是 的充分条件,试 与 的关系.(投影)

解:由已知得

所以 是 的充分条件,或 是 的必要条件.

4.小结回授

今天我们学习了充分条件、必要条件和充要条件的概念,并学会了判断条件A是B的什么条件,这为我们今后解决数学问题打下了等价转化的基础.

课内练习:课本(人教版,试验修订本,第一册(上))第 35页练习l、2;第36页练习l、2.

(通过练习,检查学生掌握情况,有针对性的进行讲评.)

5.课外作业:教材第36页 习题1.8 1、2、3.

上学期 1.8 充分条件与必要条件

相关文章

杨梅的功效与作用有哪些

杨梅上火吗杨梅上火吗?相信爱美的MM可特别关心这个问题,毕竟若是上火的吃了脸可不好看哦。那现在就让我们来探讨下这个问题吧。杨梅本身含有多种纤维素、矿质元素、维生素和一定量的蛋白质、脂肪、果胶及8种对人...
资料大全2018-01-01
杨梅的功效与作用有哪些

乔迁新居对联

乔迁新居也是大喜事,喜事贴对联是我国一个习俗,接下来是unjs小编为大家精心搜集的乔迁新居对联大全,供大家参考借鉴,乔迁新居对联大全。乔迁新居对联大全(一)上联:继广重门留好语...
资料大全2018-02-01
乔迁新居对联

隐藏化妆痕迹的小技巧

隐藏化妆痕迹的小技巧虽然现在是一个追求自然美的时代,但是很多MM还是希望能通过化妆来让自己变得更美。这就是鱼与熊掌不可兼得了。一方面想自然,另一方面又希望更美。怎么办?有没有什么方法让别人看不出自己化...
资料大全2016-06-04
隐藏化妆痕迹的小技巧

个人租房协议

租房协议是很重要的,下面unjs小编整理了个人2017租房协议,欢迎阅读!个人2017租房协议一甲方(出租方):_________________身份证:_______________...
资料大全2019-04-07
个人租房协议

广交会邀请函

邀请函分为婚庆邀请函、商务邀请函、会议邀请函等。现如今,我们会经常接触到邀请函,一起来参考邀请函是怎么写的吧,下面是小编为大家整理的广交会邀请函,希望能够帮助到大家。  广交会邀请函 篇1尊敬的xxx...
资料大全2014-04-05
广交会邀请函

扬尘治理的实施方案

为了确保事情或工作有序有效开展,通常会被要求事先制定方案,方案是为某一行动所制定的具体行动实施办法细则、步骤和安排等。那么方案应该怎么制定才合适呢?以下是小编精心整理的冬季扬尘治理的实施方案,希望能够...
资料大全2011-08-06
扬尘治理的实施方案