浅谈数据挖掘

浅谈数据挖掘

浅谈数据挖掘1

数据挖掘所得到的`信息应具有先前未知、有效和可实用3个特性.文章简单介绍了数据挖掘技术、功能特性及它的实际应用.

作 者: 侯晓凌 Hou Xiaoling 作者单位: 山西大同大学教育科学与技术学院,山西,大同,037009 刊 名: 科学之友 英文刊名: FRIEND OF SCIENCE AMATEURS 年,卷(期): 20xx ""(11) 分类号: P208 关键词: 数据挖掘 决策分析 关联分析

浅谈数据挖掘2

  摘要:在电子商务中运用数据挖掘技术,对服务器上的日志数据、用户信息和访问链接信息进行数据挖掘,有效了解客户的购买欲望,从而调整电子商务平台,最终实现利益更大化。本文旨在了解电子商务中的数据源有哪些,发掘数据挖掘在电子商务中的具体作用,从而为数据挖掘的具体设计奠定基础。

  关键词:数据挖掘电子商务数据源

  一、电子商务中数据挖掘的数据源

  1.服务器日志数据客户在访问网站时,就会在服务器上产生相应的服务器数据,这些文件主要是日志文件。而日志文件又可分为Ser-vicelogs、Errorlogs、Cookielogs。其中Servicelogs文件格式是最常用的标准公用日志文件格式,也是标准组合日志文件格式。标准公用日志文件的格式存储关于客户连接的物理信息。标准组合日志文件格式主要包含关于日志文件元信息的指令,如版本号,会话监控开始和结束的日期等。在日志文件中,Cookielogs日志文件是很重要的日志文件,是服务器为了自动追踪网站访问者,为单个客户浏览器生成日志[1]。

  2.客户登记信息

  客户登记信息是指客户通过Web页输入的、并提交给服务器的相关用户信息,这些信息通常是关于用户的常用特征。

  在Web的数据挖掘中,客户登记信息需要和访问日志集成,以提高数据挖掘的准确度,使之能更进一步的了解客户。

  3.web页面的超级链接

  辅之以监视所有到达服务器的数据,提取其中的HTTP请求信息。此部分数据主要来自浏览者的点击流,用于考察用户的行为表现。网络底层信息监听过滤指监听整个网络的所有信息流量,并根据信息源主机、目标主机、服务协议端口等信息过滤掉垃圾数据,然后进行进一步的处理,如关键字的搜索等,最终将用户感兴趣的数据发送到给定的数据接受程序存储到数据库中进行分析统计。

  二、Web数据挖掘在电子商务中的应用通过对数据源的原始积累、仔细分析,再利用数据发掘技术,最终达到为企业为用户服务的目的,而这些服务主要有以下几种。

  1.改进站点设计,提高客户访问的兴趣对客户来说,传统客户与销售商之间的空间距离在电子商务中已经不存在了,在Internet上,每一个销售商对于客户来说都是一样的,那么如何使客户在自己的销售站点上驻留更长的时间,对销售商来说将是一个挑战。为了使客户在自己的网站上驻留更长的时间,就应该对客户的访问信息进行挖掘,通过挖掘就能知道客户的浏览行为,从而了解客户的兴趣及需求所在,并根据需求动态地调整页面,向客户展示一个特殊的页面,提供特有的一些商品信息和广告,以使客户能继续保持对访问站点的兴趣。

  2.发现潜在客户

  在对web的客户访问信息的挖掘中,利用分类技术可以在Internet上找到未来的潜在客户。获得这些潜在的客户通常的市场策略是:先对已经存在的访问者进行分类。对于一个新的访问者,通过在Web上的分类发现,识别出这个客户与已经分类的老客户的一些公共的描述,从而对这个新客户进行正确的归类。然后从它所属类判断这个新客户是否为潜在的购买者,决定是否要把这个新客户作为潜在的客户来对待。

  客户的类型确定后,就可以对客户动态地展示Web页面,页面的内容取决于客户与销售商提供的产品和服务之间的关联。

  对于一个新的客户,如果花了一段时间浏览市场站点,就可以把此客户作为潜在的客户并向这个客户展示一些特殊的页面内容。

  3.个性化服务

  根据网站用户的访问情况,为用户提供个性化信息服务,这是许多互联网应用,尤其是互联网信息服务或电子商务(网站)所追求的目标。根据用户的访问行为和档案向使用者进行动态的推荐,对许多应用都有很大的吸引力。Web日志挖掘是一个能够出色地完成这个目标的方式。通过Web数据挖掘,可以理解访问者的动态行为,据此优化电子商务网站的经营模式。通过把所掌握的大量客户分成不同的类,对不同类的.客户提供个性化服务来提高客户的满意度,从而保住老客户;通过对具有相似浏览行为的客户进行分组,提取组中客户的共同特征,从而实现客户的聚类,这可以帮助电子商务企业更好地了解客户的兴趣、消费习惯和消费倾向,预测他们的需求,有针对性地向他们推荐特定的商品并实现交叉销售,可以提高交易成功率和交易量,提高营销效果。

  例如全球最大中文购物网站淘宝网。当你购买一件商品后,淘宝网会自动提示你“购买过此商品的人也购买过……”类似的信息,这就是个性化服务的代表。

  4.交易评价

  现在几乎每一个电子商务网站都增加了交易评价功能,交易评价功能主要就是为了降低交易中的信息不对称问题。

  电子商务交易平台设计了在线信誉评价系统,对买卖双方的交易历史及其评价进行记录。在声誉效应的影响下,卖家也更加重视买家的交易满意度,并且也形成了为获取好评减少差评而提高服务质量的良好风气。交易中的不满意(或者成为纠纷)是产生非好评(包括中评和差评)的直接原因。那么,交易中一般会产生哪些交易纠纷,这些交易纠纷的存在会如何影响交易评价结果,这些问题的解决对卖家的经营具有重要的指导价值。

  总结

  数据挖掘是当今世界研究的热门领域,其研究具有广阔的应用前景和巨大的现实意义。借助数据挖掘可以改进企业的电子商务平台,增加企业的经营业绩,拓宽企业的经营思路,最终提高企业的竞争力。

  参考文献:

  [1].赵东东.电子商务中的web数据挖掘系统设计[J].微计算机信息20xx,23(10-3):168[2].刘晔.Web数据挖掘在电子商务中的应用[J].中国市场20xx,39(9):178

浅谈数据挖掘3

  摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技

  关键词:客户关系管理毕业论文

  高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。

  关键词:客户关系管理毕业论文

  一、数据挖掘技术与客户关系管理两者的联系

  随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。

  二、数据挖掘技术在企业客户关系管理实行中存在的问题

  现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。

  1.客户信息不健全

  在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。

  2.数据集中带来的差异化的忧虑

  以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。

  3.经营管理存在弊端

  从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的.价值。

  三、数据挖掘技术在企业的应用和实施

  如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。

  1.优化客户服务

  以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。

  2.利用数据挖掘技术建立多渠道客户服务系统

  利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。

  四、数据挖掘技术是银行企业客户关系管理体系构建的基础

  随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。

浅谈数据挖掘4

  首先现在是大数据时代,所以美国计算机数据挖掘专业就业前景肯定的越来越好的,全世界每天都有几十亿人使用计算机、平板电脑、手机和其它数字设备产生海量数据。在这个各个行业和领域都已经被数据给渗透,数据已成为非常重要的生产因素的大数据时代,对于大数据的处理和挖掘将意味着新一波的生产率不断增长和消费者盈余浪潮的到来。

  美国计算机数据挖掘专业就业前景:

  美国计算机数据挖掘专业很有前途,因为几乎所有公司都会用到数据库,而数据挖掘时从数据库上挖去有用的信息,比数据库更高一级,IT就业市场竞争已经相当激烈,而数据处理的.核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业 IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大,所以如果美国计算机数据挖掘专业的毕业生在国内和国外都是非常容易就业的。

  美国计算机数据挖掘专业薪资:

  一般来说具有三年以上工作经验的数据挖掘人才年薪可以达到30到50万人民币/年,应届毕业生起薪在20万人民币/年左右。

相关文章

大理喜州 -资料

  喜洲位于大理古城以北18公里处,东临洱海,西枕苍山,喜洲是重要的白族聚居的城镇,这里有着保存最多、最好的白族民居建筑群,大理喜州。从布局上看是典型的“三坊一照壁”及“四合五天井”的白族庭院格局。这...
资料大全2019-01-03
大理喜州 -资料

北京人大附中承办航天城学校开始招生

1月11日,海淀区教委委托人大附中联合总校、人大附中承办航天城学校签约仪式举行。海淀区政府、区教委和中国人民大学、人大附中相关领导参加了会议。 背景阅读 2014年,区教委联合原总装备部、航天五院...
资料大全2018-03-06
北京人大附中承办航天城学校开始招生

阳光校园征文1500字

以下是小编收集的阳光校园征文1500字。以供参考。阳光校园征文1500字【一】同学们,少年时代是好美的,也是纯真的。我们已经站在了人生的起跑线上,为实现自己的理想,成就一番伟大的事业,做好各方面的准备...
资料大全2017-04-01
阳光校园征文1500字

拒绝垃圾食品1

尊敬的各位领导、老师,亲爱的同学们:大家早上好! 首先,我想问一下:五月份里你知道的有哪些节日? 劳动节、青年节、母亲节。。。。。。 明天是五月二十日,你可知道是什么节日吗? 或许很多同学不知...
资料大全2019-01-06
拒绝垃圾食品1

酒店开张对联大全

满面春风开业喜;应时生意在人为。看今日吉祥开业;待明朝大富启源。公平有德财源广;和气致祥生意兴。酒店兴宏图大展;人缘广裕业有孚。开张笑纳城乡客;开业喜迎远近宾。红梅献瑞祝新店;瑞雪拥祥贺启门。色香味形...
资料大全2013-08-04
酒店开张对联大全

中国民航飞行学院航空工程学院

我院因工作需要,拟从南航2007届毕业生中招聘博士/硕士研究生到我院专业理论教师岗位工作。招聘专业包括:飞机器设计/制造、飞行器动力工程、航空电气/通信。请有意投身于民航高校教育事业的毕业生与中国民航...
资料大全2019-01-09
中国民航飞行学院航空工程学院