大学数学建模学科介绍范文通用31篇
大学数学建模学科介绍范文 第一篇
在编舞过程中舞蹈编导占据着绝对重要的位置。从舞蹈创作,到舞蹈整个排练,再到演出都是由舞蹈编导组织完成的。舞蹈编导在整个工作过程中不仅要会“编”而且要能“导”,只有将这两项工作很好地结合在一起,才能使舞蹈达到应有的效果。所以,舞蹈编导必须具备极高的专业素养。概而言之,舞蹈编导必须具有以下几项素养:
①舞蹈编导自身必须具备较高的音乐感,对文学、美术以及音乐多个方面都要精通;
②在日常生活中舞蹈编导必须善于观察生活,通过自身的体验和对生活的感悟发掘出自己无限的创作力;
③作为舞蹈编导要有较强的逻辑思维能力,必须要有一定的创新能力;以确保拥有一个素材后能够根据素材的内容将其创新,达到舞蹈的效果;
④作为舞蹈编导自身必须会跳舞,能够掌握一些基本的舞蹈动作和舞蹈技能,只有这样才能更好地指导舞蹈演员对动作的表现。
其中,文学素养占据着非常重要的位置,贯穿到整个舞蹈的编创过程中。编导在编舞时首先是发现素材,进而对素材进行整理和创编。在创编时要经历确定主题、设定人物形象、设计舞蹈动作、完善舞蹈整体结构等步骤。这些步骤的完成又需要编导撰写一个文学形式的舞蹈脚本,进而根据这个脚本的内容增添主题中的情节,并找到整个情节中的抒情点,最终使整个舞蹈具有与众不同的思想性。而要保证这整个环节的艺术性,编导只有拥有了一定的文学素养,才能使这个环节完成得完美无缺。
大学数学建模学科介绍范文 第二篇
文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。
课程是高校教育教学活动的载体,是学生掌握理论基础知识和提高综合运用知识能力的重要渠道,学生创新能力的形成必定要落实在课程教学活动的全过程中。“数学建模”是一门理论与实践紧密结合的数学基础课程,课程的许多案例来源于实际生活,其学习过程让学生体验了数学与实际问题的紧密联系。数学建模课程从教学理念及教学方法上有别于传统的数学课程,它是将培养学生的创新实践能力作为主要任务,利用课程体系完成创新能力的培养。由于课程教学内容系统性差,建模方法涉及多个数学分支,课程结束后还存在着学生面对实际问题无从下手解决的现象。通过深入研究课程教学体系,将传授知识和实践指导有机结合,实施以数学建模课程教学为核心,以竞赛和创新实验为平台的新课程教学模式。
一、数学建模课程对培养创新人才的作用
(一)提高实践能力
数学建模课程案例主要来源于多领域中的实际问题,它不仅仅是单一的数学问题,具有数学与多学科交叉、融合等特点。课程要求学生掌握一般数学基础知识,同时要进一步学习如微分方程、概率统计、优化理论等数学知识。这就需要学生有自主学习“新知识”的能力,还要具备运用综合知识解决实际问题的能力。因此,数学建模课程对于大学生自学能力和综合运用知识能力的培养具有重要作用。
(二)提高创新能力
数学建模方法是解决现实问题的一种量化手段。数学建模和传统数学课程相比,是一种创新性活动。面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质
二、基于数学建模课程教学全方位推进创新能力培养的实践
(一)分解教学内容增强课程的适应性
根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。课堂教学注重数学建模知识的学习,课后教学重在知识的运用。随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度
1.课堂教学融入引导式和参与式教学方法。数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
2.课后实践实施讨论式和合作式教学方法。在课后实践教学中,提倡学生组成学习小组,教师参与小组讨论共同解决建模问题。学生以主动者的角色积极参与讨论、独立完成建模工作,并进行小组建模报告,教师给予点评和纠正。对那些没有彻底解决的问题,鼓励学生继续讨论完善。通过学生讨论、教师点评、学生完善这一过程,极大地调动了学生参与讨论、团队合作的热情。同时,教师鼓励学生自己寻找感兴趣的问题,用数学建模去解决问题。
3.课程综合实践推进研究式教学方法。指导学生在参加数学建模竞赛、学习专业知识、做毕业设计及参与教师科研等工作中,学习深入研究建模解决实际问题的方法,通过多层次建模综合实践能提高分析问题、选择方法、实施建模、问题求解、编程实践、计算模拟的综合能力,进而提高创新能力。
(三)融合多种教学手段,提高课程的实效性
大学数学建模学科介绍范文 第三篇
本书的特点在于:(1) 严格的数学步骤和实例――数学创新和发现的驱动力;(2)从广泛学科中挑选的众多实例,重在说明应用数学和数学建模的多学科应用和普适性;(3) 来自人类知识各方面发展中既有理论也有应用的原创性结果;(4)促进数学家、科学家和工程师之间进行交叉学科相互作用的讨论。
对于从事数学和统计科学、模化和模拟、物理学、计算科学、工程学、生物和化学、工业和计算工程等领域的专业人员来说,这是一本理想的参考书。本书也可当作数学建模、应用数学、数值方法、运筹学以及优化等方面的大学课程的教科书。
本书共分五部分,12章。第一部分 引论,含第1章:1.在理解自然、社会和人造世界中数学模型的普适性。第二部分 在物理学和化学中的高等数学模型和计算模型,含第2-4章:2.磁涡,Abrikosov 晶格,以及自同构函数;3.在Cholesky分解的局部关联量子化学架构中的数值挑战;4.量子力学中的广义变分原理。第三部分 在生命科学和气候科学应用中的数学模型和统计模型,含第5-6章:5.具有药物敏感、出现多重耐药以及广泛耐药株的结核病的传播模型;6.着眼于抗菌素耐药性而对更加综合的传染病进行建模的需要。第四部分 科学和工程中的数学模型与分析,含第7-10章:7.动力学系统中由数据驱动的方法:量化可预报性以及提取时空图案;8.求解Banach空间中非线性反问题进行正则化的光滑度概念;9.一阶对称具有约束的双曲型系统的初值问题和初边值问题;10.信息集成,组织和数值调和分析。第五部分 社会科学和艺术中的数学方法,含第11-12章:11.满意认可的选举;12.使用几何量化对音乐韵律变化的建模
谈庆明,教授
(中国科学院力学研究所)
大学数学建模学科介绍范文 第四篇
摘要:当分析和研究一个实际问题时,可以把它归结于一个具体模型,模型是为了一定目的,对客观事物的一部分进行简缩、抽象出来的原型的替代物。模型集中反映了原型中人们需要的那一部分特征。人们在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,然后用数学的语言,把它表述为数学式子,也就是数学模型。本文将简单地介绍数学模型的含义、建模的过程及应用,让大家可以进行数学建模来解决一些简单问题。
关键词:数学模型;建模;应用
一、数学模型
生活中有许多的模型,并且是多种类型的。比如说玩具、照片、飞机等实物模型,水箱中的舰艇、风洞中的飞机等物理模型。这些模型是我们进行数学建模时所必需的。
数学模型是一种模拟,是用数学符号、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常需要人们对现实问题深入细微的观察和分析,也需要人们灵活巧妙地利用各种数学知识。
二、数学建模
数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。数学建模是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。要描述一个实际现象可以有很多种方式,比如录音,录像等等。但为了使描述更具科学性,逻辑性,客观性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。接下来介绍一下数学建模的基本方法,数学建模的基本方法一般有机理分析,测试分析,二者结合等,机理分析就是根据对客观事物特性的认识,找出反映内部机理的数量规律。机理分析有以下几种具体的方法:1.比例分析法――建立变量之间函数关系的最基本最常用的方法。2.代数方法――求解离散问题的主要方法。3.逻辑方法――是数学理论研究的重要方法,对社会学和经济学等领域的实际问题有广泛应用。测试分析就是将对象看作“黑箱”,通过对测量数据的统计分析,找出与数据拟合最好的模型。测试分析有以下具体的方法:1.回归分析法――用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。2.时序分析法――处理的是动态的相关数据。所谓二者结合就是用机理分析建立模型结构,用测试分析确定模型参数。
三、模型准备
下面就以生活中的实例来阐述模型准备过程。问题是椅子能在不平的地面上放稳吗?数学建模的过程通常有问题分析,模型假设,模型建立,模型求解,模型分析,模型检验。
1.问题分析:通常椅子三只脚着地是不稳的,四只脚着地是稳定的。所以椅子能否在不平的地面上放稳,只需要知道椅子的四只脚能否一起着地(即椅脚与地面的距离和为零)。
2.模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出恰当的假设。在这里我们假设椅子的四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;地面高度连续变化,可视为数学上的连续曲面;地面相对平坦,使椅子在任意位置至少三只脚同时着地。
3.模型建立
在假设基础上,利用适当的数学工具刻划各变量之间的数学关系,建立相应的数学结构。在这里就是用数学语言把椅子位置和四只脚着地的关系表示出来。
在这里我们先利用正方形(椅脚连线)的对称性来确定椅子的位置。用θ(对角线与x轴的夹角)表示椅子位置。椅脚与地面的距离是θ的函数。设A,C两脚与地面距离之和f(θ),B,D两脚与地面距离之和g(θ)。由地面高度连续变化可以知道f(θ)与g(θ)是连续变化的函数。再由椅子在任意位置至少三只脚同时着地可以知道对任意,f(θ),g(θ)至少一个为0。而由问题分析可知椅子放稳只需要f(θ),g(θ)都等于0即可。
所以现在一个生活中的实例问题已经装化成一个简单的数学问题:
已知:f(θ),g(θ)是连续函数,对任意θ,f(θ)・g(θ)=0且g(0)=0,f(0)>0.证明:存在α,使f(α)=g(α)=0.
4.模型求解
利用获取的数据资料,对模型的所有参数做出计算。
将椅子旋转90度,对角线AC和BD互换。
由g(0)=0,f(0)>0,知f(∏/2)=0,g(∏/2)>0.
令h(θ)=f(θ)g(θ),则h(0)>0和h(∏/2)
由f,g的连续性知h为连续函数,据连续函数的基本性质,必存在α,使h(α)=0,即f(α)=g(α).因为f(θ)・g(θ)=0,所以f(α)=g(α)=0.
5.模型分析:对所得的结果进行数学上的分析。对上述的θ,f(θ)和g(θ)的确定是关键。
6.模型检验:把求解和分析结果翻译回到实际问题,与实际现象、数据进行比较,检验模型的合理性与适用性。
四、数学建模应用
近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。
参考文献
[1]徐全智,杨晋浩.数学建模.第二版.北京:高等教育出版社,2008
[2]姜启源,谢金星,叶俊.数学模型.第四版.北京:高等教育出版社,2010
大学数学建模学科介绍范文 第五篇
一个月的集训对我来说,无论是在意志方面,还是在知识的利用方面,都是一个难得的锻炼机会。通过做模型,开拓了自己的知识面,也提高了运用知识解决实际问题的能力;通过模型讨论,是自己在欣赏到身边同学席位的多样性和创造性的同时,看到了自己的特点与不足,从而对自己的能力有了更深刻的了解。通过建模集训,以下几点给我感受颇深:
一)队员之间的配合至关重要。每个人都有特长与不足,队员之间应该做到优势互补。因而队员之间要学会沟通,了解彼此的特点。在此基础上,还要学会配合。要彼此配合好,我觉得队员们做到:对自己的弱项,要虚心想队友请教,而对于队友的弱项,自己在弥补的同时还不应影响队友的积极性;每个队员都应该有团队责任感和荣誉感,对员之间最忌讳的就是存在依赖性,“三个和尚没水喝”就是一个很好的警示;每个队员都要有大局观。建模过程队员之间难免出现意见不一致的时候,这时就要求队员保持清醒理智的头脑。自以为是,听不进别人意见的队员我觉得不适合建模。但是队员也不能失去自己的立场,一味盲从。
二)每个队员的心态也非常重要。首先,一个人要有充分的信心,这是成功的条件之一,否则的话,遇到一点点困难就会逃避;另外,一个人不要将名利看得太重。如果看得太重的话,只回增加心理负担,也会促使自己去做一些急功近利的事情,从而影响自己的发挥。我个人认为,成功有一定的机遇成分,一些东西是强求不得的。所以我平时都是以“多学点东西”为动力的。
三)创新思维的培养不容忽视。从历年来获奖论文中可以看出,那些有创意的思想构成了论文的闪光点,而那些闪光点是获奖必不可少的。其实,创新思维是一种习惯。只要养成此习惯,平时就可以一点一滴的积累创新灵感,到了该用的时候,这些灵感就有可能用的上。不是说创新灵感只出现在参赛的三天之内。
大学数学建模学科介绍范文 第六篇
科研引路 精益求精 勇创佳绩
——记东华小学教师李同志
她对本职工作精益求精,勇于开拓创新,探索出了“自学点拨式”课堂教学模式,该模式依据“以人为本的教学思想,自主学习的教育理念,合作学习的教育理论”,树立了“以教师为主导,以学生为主体”的教学意识,构建了“学生先自学,教师后点拨”的教学模式,创设了宽松和谐的课堂教学氛围,促进了学生全面和谐地发展,教学效果非常显著,得到上级主管部门的高度评价并大力推广应用。多年来,她所带班级学生的数学及格率均达96%以上,优秀率均在95%以上,一直稳居同级同科第一或全县第一,先后有60多名学生在县级以上数学竞赛中获奖或发表了数学小论文。所代六年级四班68名学生在全县毕业会考中数学及格率,优秀率,平均分,综合成绩,再次名列同级五个教学班第一。
她坚持走“科研引路,教改助教”的路子,截止目前有80多篇教研论文在国家、省、市、县20多家教育教学刊物上发表或获奖。其中《联想转换“五技巧”》、《加强小学数学中的素质教育》、《实践新“课标” 做到“四转变”》、《增大学生学习的自由度》、《试论小学数学教学中学生创新能力的培养》等发表在《中小学数学》、《甘肃教育》、《兰州教育》、《平凉日报》、《平凉教育》、《甘肃教育学院学报(自然科学版)》、《中小学骨干教师国家级培训论文集》等刊物上;《我是如何在小学数学教学中实施素质教育的》荣获第二届全国教学与管理优秀论文评选二等奖,《试论小学数学教学中学生创新能力的培养》荣获甘肃省优秀论文一奖,《增大学生学习的自由度》荣获平凉市素质教育有奖征文二等奖;《分数、百分数应用题编题训练》、《转“差”贵在“五心”》等入选《中国教育丛书》、《教坛群英论文集》、《中国素质教育论文集》等书;4月她出版了个人第一部教研专著《学步集》,全书分为上、下篇,上篇收录研究文章40篇,以解题方法的研究为主,兼及素质教育、创新能力、作业训练、“差生”转化、课程标准、教学模式等方面的研究;下篇收录20例教学设计,全是示范课教案;从这些文章和教学设计中,可以反映出她超前的教育理念,先进的教学思想,灵活的教学方法,独特的教学思路,鲜明的教学风格,可以感受到她敢于创新的精神,严谨务实的教学态度和热爱工作、热爱学生的品质。她的这些论文或总结教学经验、或研究教材教法、或进行学法指导、或指导教研教改,都具有很高的学术价值。
李同志二十年如一日,默默地耕耘着,无私地奉献着,孜孜地追求着,用自己的青春谱写着辉煌的篇章……
大学数学建模学科介绍范文 第七篇
摘要:
层次分析法是美国学者于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。
关键词:
Excel 模型 层次分析法
一、层次分析法的基本原理
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。
用AHP分析问题大体要经过以下七个步骤:
(1)建立层次结构模型;
首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。
其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。
中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。
最低层:表示解决问题的措施或政策(即方案)。
(2)构造判断矩阵;
设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。
用 表示第i个因素相对于第j个因素的比较结果,则
A则称为成对比较矩阵
比较尺度:(1~9尺度的含义)
如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。
倒数:若j因素和i因素比较,得到的判断值为
(3)用和积法或方根法等求得特征向量 W(向量 W 的分量 Wi 即为层次单排序)并计算最大特征根λmax;
(4)计算一致性指标 CI、RI、CR 并判断是否具有满意的一致性。其中RI是
平均随机一致性指标 RI 的数值:
矩阵阶数34567891011
CR=CI/RI,一般地当一致性比率CR<时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。
(5)层次总排序,如表1所示。
(6)层次总排序一致性检验,如前所述。
(7)根据需要进行调整 对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例 CR≤ 就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。
二、层次分析法 Excel 模型设计过程
案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。
⒈根据题意可以建立层次结构模型如图1所示。
⒉Excel实现过程
⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。 其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。 G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格 G8=SUM(G4:G7),表示求和 H4=G4/$G$8,复制公式至H7单元格 I4= B4*H$4+C4*H$5+D4*H$6+E4*H$7,复制公式至I7单元格 J4= I4/H4 λmax= AVERAGE(J4:J7)。 CI=(J8-4)/(4-1),CR=CI/;,即通过一致性检验。
⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。
⑶层次总排序,由于苏州数值最高,故选择的旅游地为苏州,如图4所示。 其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。
三、基于Excel的层次分析法模型设计的优势
(1)层次分析法 Excel 算法以广泛使用的办公软件 Excel 作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。
(2)层次分析法 Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。
(3)层次分析法 Excel 算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。
(4)层次分析法 Excel 算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。
(5)如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调” ,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。
大学数学建模学科介绍范文 第八篇
各位老师,上午好!我叫XXX,是**级**班的学生,我的论文题目是《义务教育阶段学生数学建模能力评价研究》。论文是在鲍建生导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的研究背景和主要内容向各位老师作一汇报,恳请各位老师批评指导。
首先,我想谈谈这个毕业论文的研究背景。
在过去的30多年里,数学建模和数学应用成为数学教育的中心话题之一,表现在:关于建模的文献大量涌现,有关数学建模的书籍相继出版以及一系列国际会议的召开:国际数学教育大会 the International Congresses on MathematicalEducation…ICME,国际数学建模与应用的教学大会the InternationalConferences on the Teaching of Mathematical Modeling andApplications--ICTMA.
在1976年,ICME-3上,Henry Pollak整合应用与建模到数学教学中,作了名为“数学和其他学校学科的相互作用”的调查报告(survey lecture),从而把应用与建模带到了前沿;ICME-4上,Bell傲了 “学校里数学应用教学的世界范围的可用材料”的报告、从1984年在澳大利亚的ICME -5开始,应用与建模被列为每4年一次的ICME会议的日程,包括常规工作(regular working),专题小组(topic groups)以及报告(lectures)。
ICTMA5的历史起于考虑为那些成为研究生后将被要求解决繁杂的真实问题的本科生做准备,在英国,可以被称为ICTMA之父的David Burghes,决定和学校教师一起合作为中学的小孩制作有趣的建模调查,来活跃学校数学课程。ICTMA团体从1983年开始,每2年举办一次ICTMA大会,每次会议都会出版一本会议论文集。一系列会议提供一个论坛,讨论所有领域,所有水平的数学教育---从小学到中学到学院到大学一中涉及的应用与建模教学的所有方面。在2003年,ICTMA成为ICMI的一个附属团体,许多成员参与了 ICMI研究系列14 “数学教育中的应用与建模”.
其次,我想谈谈这篇论文的主要内容。
本文根据框架上的五个评价桁标进fr测试题的编制,并得到按照“义务教育阶段学生数学建模能力评价框架”编制逑模测试任务时的5个原则:
情境维度:背景不容易剥离:
内容维度:情境下的数学内界所以有可能是多样的;
过程维度:解答建模测试任务仏:要“数学化”(现实情境--数学模型)的过程;
任务类型设置维度:三种类型的建模测试形式可以选择某种或某几种;
建模水平维度:需要考虑建模测试任务的水平属于再现、联系、反思的哪一个水平。
并按照评价框架生成数学建模能力测试卷,选取全国八个不同地区的1172名学生进行测试,采用项目反映理论(IRT: Item Response Theory)对于测试结果进行分析,检验测试题的拟定水平是否符合客观水平,从而验证了评价框架的合理性和有效性。
最后,我想谈谈这篇论文存在的不足。
这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。
谢谢!
大学数学建模学科介绍范文 第九篇
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳。 高等数学教学中融入数学建模思想[J]。 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 —120.
[2] 李薇。 在高等数学教学中融入数学建模思想的探索与实践[J]。 教育实践与改革,2012 ( 04) : 177 —178,189.
[3] 杨四香。 浅析高等数学教学中数学建模思想的渗透 [J]。长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财。 在高等数学教学中融入数学建模思想 [J]。 贵阳学院学报,2013 ( 03) : 63 —65.
大学数学建模学科介绍范文 第十篇
摘要:
将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:
数学建模;高等数学;教学研究
一、引言
建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状
高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性
第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。
第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。
第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。
四、将建模思想融入高等数学的实践方法
第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。
第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。
第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。
大学数学建模学科介绍范文 第十一篇
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说xxx,数学建模xxx包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指xxx对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成xxx[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的xxx满堂灌xxx,也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
大学数学建模学科介绍范文 第十二篇
一、优秀论文评语
该生有较强的查阅文献资料的能力,能全面搜集有关论题的资料和学术信息,在撰写的过程中能综合运用自身所学的基础知识及专业理论,对论题进行全面的探讨和深入的分析。
该生通过着手分析当前的现实状况,明确了其存在的原因和问题症结点,并提出了一系列有效可行的措施,进而对有关现实问题的解决起到了一定的帮助作用,具有应用价值。
该论文思路清晰、内容充实、观点明确、论据充分、论证严格,整篇论文的逻辑性强,层次清晰,结构合理,文笔流畅,完全符合论文的标准和规范。 该生具有优秀的分析问题和解决问题的能力,对有关问题见解独特,论文研究有一定的深度,并且具有较强的时效性。
该生的综合能力反映了学士学位应具备的优秀水平,其论文达到了本科优秀论文的水准。
二、良好论文评语 该生通过查阅有关论题的资料和信息,在吸收学术研究成果的基础上,能够良好的运用自身所学知识对论题进行较为深入的分析和研究。
整篇论文的论述观点正确,论点突出,材料充实,叙述层次分明,文字通顺、流畅,有较强的逻辑性和良好的时效性。
此外,论文格式正确,结构科学、书写规范,条理清晰,符合所要求的标准和规范,有一定的创新见解,但对有关问题研究的深入程度不足。
该生的综合能力反映了学士学位具备的良好水平,其论文达到了本科良好论文的水准。
三、中等论文评语
该生查阅文献资料能力一般,能收集关于论题的资料和文献,在写作过程中能够运用系统知识对问题进行较合理的分析。
论文论题与论文内容基本相符,结构完整,语言比较流畅,学术表达一般。文章篇幅符合所要求的规定,内容基本完整,层次结构安排一般,但主要观点不够突出,逻辑性较差,没有个人见解。
该生的综合能力反映了学士学位具备的中等水平,其论文达到了本科中等论文的水准。
大学数学建模学科介绍范文 第十三篇
1高等数学教学中数学建模思想应用的优势
有助于调动学生学习的兴趣
在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。
有助于培养学生的创新能力
和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。在很大程度上提高了学生数学运用能力,培养了学生的创新意识,增强了学生的创新能力。
2高等数学教学中数学建模思想应用的原则
在进行数学建模的时候,一定要保证实例简明易懂,结合日常生活的实际情况,创设相应的教学情境,激发学生学习的兴趣。从易懂的实际问题出发,由浅到深的展开教学内容,通过建模思想的渗透,让学生进行认真的思考,进而掌握一些学习的方法与手段。在实际教学中,不要强求统一,针对不同的专业、院校,展开因材施教,加强与教学研究的结合,不断发现问题,并且予以改进,达到预期的教学效果。教师需要编写一些可以融入的教学单元,为相关课程教学提供有效的数学建模素材,促进教师与学生的学习与研究,培养个人的教学风格。除此之外,在实际教学中,可以将教学重点放在大一的第一学期,加强教师引导与教育,根据实际问题,重视微积分概念、思想、方法的学习,结合数学建模思想,让学生充分认识到高等数学的重要性,进而展开相关学习。
3高等数学教学中融入数学建模思想的有效方法
转变教学观念
在高等数学教学中应用数学建模思想,需要重视教学观念的转变,向学生传授数学模型思想,提高学生数学建模的意识。在有关概念、公式等理论教学中,教师不仅要对知识的来龙去脉进行讲解,还要让学生进行亲身体会,进而在体会中不断提高学习成绩。比如,37支球队进行淘汰赛,每轮比赛出场2支球队,胜利的一方进入下一轮,直到比赛结束。请问:在这一过程中,一共需要进行多少场比赛?一般的解题方法就是预留1支球队,其它球队进行淘汰赛,那么36/2+18/2+10/2+4/2+2/2+1=36。然而在实际教学中,教师可以转变一下教学思路,通过逆向思维的形式解答,即,每场比赛淘汰1支球队,那么就需要淘汰36支球队,进而比赛场次为36。通过这样的方式,让学生在练习过程中,加深对数学建模思想的认识,提高高等数学教学的有效性。
高等数学概念教学中的应用
在高等数学概念教学中,相较于初高中数学概念,更加抽象,如导数、定积分等。在对这些概念展开学习的时候,学生一般都比较重视这些概念的来源与应用,希望可以在实际问题中找出这些概念的原型。实际上,在高等数学微积分概念中,其形成本身就具有一定的数学建模思想。为此,在导入数学概念的时候,借助数学建模思想,完成教学内容是非常可行的。每引出—个新概念,都应有—个刺激学生学习欲的实例,说明该内容的应用性。在高等数学概念教学中,通过实际问题情境的创设与导入,可以让学生了解概念形成的过程,进而运用抽象知识解决概念形成过程,引出数学概念,构建数学模型,加强对实际问题的解决。比如,在学习定积分概念的时候,可以设计以下教学过程:首先,提出问题。怎样求匀变速直线运动路程?怎样计算不规则图形的面积?等等。其次,分析问题。如果速度是不变的,那么路程=速度×时间。问题是这里的速度不是一个常数,为此,上述公式不能用。最后,解决问题。将时间段分成很多的小区间,在时间段分割足够小的情况下,因为速度变化为连续的,可以将各小区间的速度看成是匀速的,也就是说,将小区间内速度当成是常数,用这一小区间的时间乘以速度,就可以计算器路程,将所有小区间的路程加在一起,就是总路程,要想得到精确值,就要将时间段进行无限的细化。使每个小区间都趋于零,这样所有小区间路程之和就是所求路程。针对问题二而言,也可以将其转变成一个和式的极限。这两个问题都可以转变成和式极限,抛开实际问题,可以将和式极限值称之为函数在区间上的定积分,进而得出定积分的概念。解决问题的过程就是构建数学模型的过程,通过教学活动,将数学知识和实际问题进行联系,提高学生学习的兴趣与积极性,实现预期的教学效果。
高等数学应用问题教学中的应用
对于教材中实际应用问题比较少的情况而言,可以在实际教学中挑选一些实际应用案例,构建数学模型予以示范。在应用问题教学中应用数学建模思想,可以将数学知识与实际问题进行结合,这样不仅可以提高数学知识的应用性,还可以提高学生的应用意识,并且在填补数学理论和应用的方面发挥了重要作用。对实际问题予以建模,可以从应用角度分析数学问题,强化数学知识的运用。比如,微元法作为高等数学中最为重要、最为基础的思想与方法,是高等数学普遍应用的重要手段,也是利用微积分解决实际问题,构建数学模型的重要保障。为此,在高等数学教学中,一定要将其贯穿教学活动的始终。在实际教学中,教师可以根据生命科学、经济学、物理学等实际案例,加深学生对有关知识历史的了解,提高学生对有关知识的理解,培养学生的数学建模意识。又比如,在讲解导数应用知识的时候,教师可以适当引入切线斜率、瞬时速度、边际成本等案例;在讲解极值问题的时候,可以适当引入征税、造价最低等案例。这样不仅可以激发学生学习的兴趣与积极性,还可以创设良好的教学氛围,对提高课堂教学效果有着十分重要的意义。
4高等数学教学中应用数学建模思想的注意事项
避免“题海战术”
数学是一个系统学科,需要从头开始教学,为此,教师一定要注意循序渐进。首先,在教学过程中,教师可以从教材出发,对概念、定理等进行讲解,让学生进行掌握与运用,转变教学模式,让学生牢记教材知识。其次,慎重选择例题练习,避免题海战术,培养学生的数学建模思想,逐渐提高学生的数学素质。
强调学生的独立思考
在以往高等数学教学中,均是采用“填鸭式”的教学模式,不管学生是否能够接受,一味的讲解教材知识,不重视学生数学建模思想的培养。目前,在教学过程中,教师一定要强调学生独立思考能力的培养,通过数学模型的构建,激发学生的求知欲与兴趣,明确学习目标,培养学生的数学思维,进而全面渗透数学建模思想,提高学生的数学素质。
注意恐惧心理的消除
在高等数学教学中,注意消除学生学习的恐惧心理及反感,提高课堂教学效果。在实际教学过程中,培养学生勇于面对错误的品质,让学生认识到错误并不可怕,可怕地是无法改正错误,为此,一定要提高学生的抗打击能力,帮助学生树立学习的自信心,进而展开有效的学习。学习是一个需要不断巩固和加强的过程,在此过程中,必须加强教师的监督作用,让学生可以积极改正自身错误,并且不会在同一个问题上犯错误,提高学生总结与反思的能力,在学习过程中形成数学思想,进而不断提高自身的数学成绩。
5结语
总而言之,高等数学课堂教学是培养学生数学品质的主要场所之一,通过高等数学教学和数学建模思想的结合,可以加深学生对高等数学知识的理解,进而可以提高学生对高等数学知识的运用能力。目前,在高等数学教学中,一定要重视数学建模思想的融入,改进教学模式,促使教学内容的全面展开,完成预期的教学任务,提高学生的数学水平。
大学数学建模学科介绍范文 第十四篇
20XX年,是我矿实现原煤生产大跨越的一年,是全矿干群诚信服从求进取,忠诚敬业创佳绩的一年,一年来,矿思想政治工作研究会充分发挥思想政治工作优势,大力开展形式多样的思想政治工作研究活动,把思想政治工作溶入到了企业的安全生产、经营管理等各项工作之中,为我矿健康持续稳定发展提供了强大的发展动力,10月份矿党委政研会结合我矿新时期工作的特点,精心选编了二十个思想政治工作调研课题,在全矿干部中开展征集活动,截止11月30日共收到调研论文94篇,经过政研会认真评选,评出优秀论文30篇。为表彰先进,激励后进,不断开创政研工作新局面,矿党委决定对范书友等30名获得优秀论文的同志进行公开表彰,名单如下:
一等奖5人:范书友、史宗智、李治民、刘步一、李现志
二等奖10人:刘会钊、梅红仁、周振乾、陈焕琴、刘建国
马金才、马志军、王峰、魏新刚、韦大鹏
三等奖15人:杨西勋、赵春兰、xxx旦、王世民范心顺
裴建子、严献仓、张毅、上官建民、贾年松
范秀英、郅玲玲、江茂东、范三流、刘建停
为切实推进我矿政治研究工作再上新台阶,矿党委希望受到表彰的同志要珍惜荣誉,戒骄戒躁,真心实意,真抓实干,按照我矿政研会要求,认真做好明年的思想政治工作,把取得的成绩当作新的起点,把获取荣誉当作前进的动力,扎扎实实地做好各项工作。矿党委号召,基层支部、机关各科室,要以先进为榜样,紧紧围绕2016年xxx以严治矿,科学决策,综合管理,全面提高xxx的工作思路,为实现全年原煤生产110万吨,奋斗目标130万吨,创水平目标140万吨的整体工作布置,在全矿兴起xxx赶先进,创佳绩xxx的热潮,为我矿物质文明、精神文明和政治文明健康协调发展做出新的更大的贡献。
大学数学建模学科介绍范文 第十五篇
教师的专业发展是学校可持续发展的关键,是学校核心竞争力的最集中体现。近年来,我校的教育教学质量和社会声誉获得快速提升,与我校重视教师队伍建设,特别是重视教师的专业成长密不可分。实践证明,促进教师专业化发展,不但要有学校制度上的支持,更离不开教师自身对教育教学工作不断地进行思考与研究,总结与反思,通过撰写论文进行理论提升。
目前,我校已经有一大批教师,他们不但有工作上的热度,更有对教育教学认识上的高度和对所教学科理解上的深度。他们在紧张纷繁的日常工作之余,笔耕不辍,将自己的研究与思考写成论文。当中有许多已经在专业学术刊物上公开发表或者在不同级别的论文评比中获奖。
这不单是老师们实践工作及对其进行总结、反思的过程记录,更是他们教育教学智慧的结晶,是学校的一笔宝贵财富。为了珍惜这笔财富,加强优秀论文成果的交流与推广,让更多人得惠于此;同时,也为了感谢他们的辛勤付出,营造更加浓厚的教研氛围,鼓励更多老师积极地、深入地开展教育教学研究,让更多人养成总结与反思的习惯,更好地促进教师专业水平提升,真正推动学校内涵发展,我们在成功编印《教苑笔耕集》第
一、二卷之后,在深入推进“高效课堂”教改实验、积极向省级标准化高中迈进的征途中,从老师们已经公开发表或者获奖的论文中,拾取一部分编印成《扶风县第二高级中学优秀教研成果汇编——教苑笔耕集》第三卷。
本卷分为七大板块,以教研组为单位收集了学科论文和德育论文,共57篇,约15万字。由于时间仓促,加之篇幅有限,还有许多老师的众多优秀论文未及收录,是为憾!
大学数学建模学科介绍范文 第十六篇
一、小学数学建模
xxx数学建模xxx已经越来越被广大教师所接受和采用,所谓的xxx数学建模xxx思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为xxx数学建模xxx,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位
1.定位于儿童的生活经验
儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。xxx数学建模xxx要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式
小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使xxx数量关系xxx与数学原型xxx一乘两除xxx结合起来,并且使学生利用抽象与类比的思维方法完成了xxx数量关系xxx的xxx意义建模xxx,从而创建了完善的认知体系。
三、小学xxx数学建模xxx的教学策略
1.培育建模意识
当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是xxx生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释xxx.培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的.意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。
2.体验建模过程
在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己xxx创建xxx新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备xxx模型xxx思想,处理问题的过程能具备数学家的xxx模型化xxx特点,从而使xxx模型思想xxx影响其生活的各个方面。
3.在数学建模中促进自主性建构
要使xxx知识xxx与xxx应用xxx得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼xxx现实问题xxx的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。
我们以《比较》这课程内容为例,我们通过xxx建模xxx这一教学方法,培养学生对xxx>xxxxxxxxxxxx
四、总结
数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。
大学数学建模学科介绍范文 第十七篇
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
大学数学建模学科介绍范文 第十八篇
论文关键词:数学建模;数学应用意识;数学建模教学
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过xxx从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际xxx这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:xxx数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性xxx;xxx数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻xxx。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的'作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为
,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:
(1)数学阅读能力差,误解题意。
(2)数学建模方法需要提高。
(3)数学应用意识不尽人意数学建模意识很有待加强。
新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:
一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。
二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
大学数学建模学科介绍范文 第十九篇
摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究
一、引言
建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状
高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性
第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。 这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。
第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。
第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。
四、将建模思想融入高等数学的实践方法
第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。
第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的`知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。
第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。
大学数学建模学科介绍范文 第二十篇
一、数学建模与数学建模意识
数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。
高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。
二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。
我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。
三、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成
为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。
四、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。 五、数学建模教学与素质教育
数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力
xxx曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。
3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。
大学数学建模学科介绍范文 第二十一篇
摘要:高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。
关键词:数学;教学;数学建模
1.数学建模思想的意义
数学建模是指用数学符号将要求从定量角度进行研究分析的实际问题以公式的形式表述出来,再通过进一步计算得到相关结果,用该结果解决实际问题,即通过建立数学模型和求解的整个过程。数学建模是符合学生认知发展过程的,在数学建模中,学生通过对具体的假设、研究,对问题进行深入思考,最终得到结论,再根据实际情况应用到具体问题中。整个过程经历了提出问题、试探问题、提出猜想假设、验证问题及得出结论,整个过程符合学生认知发展的规律。数学建模思想的应用有助于帮助学生提高对数学的重视程度,调动学生学习的主动性,让学生的创造力得到更大的发挥。数学建模的应用对提高教师的教学水平也有所帮助,能够帮助教师更好地对学生进行教学,由此扩大教师在学生中的影响力。教学建模的思想应用还有利于提高学生参加竞赛的综合能力,吸引更多学生参加此类竞赛活动。
2.建模思想对能力的培养
数学建模思想很多是由实际问题的一般思维进行转变才能成为抽象的数学问题的,这要求对数学建模要抓住重点,从具体问题中抽象出问题的本质。因此,建模思想对于培养学生将具体问题经过抽象和简化用数学语言表达的能力具有重要的意义。在高职数学教学中,有很多的数学模型,这些数学模型为帮助学生解决实际问题提供了便利的方法,同时也为创建新的数学模型提供了基础依据。数学建模是将数学理论知识和实际应用联系起来的重要纽带,能够帮助学生不断探索数学中的奥妙,以此提高学生对数学的学习兴趣,提高学生实际应用数学的能力和解决实际问题的能力。运用数学建模解决实际问题的过程中,要根据已知条件的变化,灵活运用新方法和新途径促进学生综合运用能力和创新思维的发展。
3.数学建模在高职数学教学中的应用
利用教学内容渗透数学建模思想在数学教学中,教师要根据教材的情况和学生的实际情况,将两者相联系,让学生能够运用数学建模思想寻找解决问题的办法,解决实际问题。在教学中,教师要向学生灌输数学建模思想,利用具体模型设置和假设情景,把数学知识和实际生活相联系,帮助学生更好地理解数学实际内容,提高知识应用能力。比如在高职数学对定积分概念进行教学时,就可以通过介绍曲边梯形的面积求法,让学生学会分割、求和、取极限的定积分模型思想,然后再进行思考,求物体的体积、质量等。如果学生发现解决这些问题的数学模型的思想基本相同,就会不断拓展新思路解决其他问题。运用这种方式,能够加深学生对概念的理解,拓展学习思维,强化教学效果。在学习定理公式的时候,也可以引进数学建模思想,通过提出问题、假设问题,要求学生计算求值,再根据值的正负情况求出方程式的根,根据根值与区间的关系,引导学生想出零点定理的概念总结。
利用实际问题渗透教学建模思想教师在数学建模教学或布置作业时,要与实际的生活相联系,让学生在实际问题的解决中学会运用建模思想。比如在问题的设置上,可以利用身边熟悉的事物进行提问,让学生从熟悉的环境中找到合适的解决方法。这不仅能够帮助学生更好地理解知识概念,还与学生以后的工作有着紧密的联系。通过在实际问题中渗透教学建模思想,让学生掌握基本的理论知识,提高知识应用能力。此外,教师在课外作业的布置上也要运用数学建模思想解决实际的问题,让学生能够有效利用所学的数学知识分析解决生活中的问题,从而提高知识应用能力,培养出学生的创新思维,提高高职数学建模教学的效率。
提高数学建模思想在教材编写中的应用目前高职数学的教材基本都是按照本科教材进行编排的,重视理论而忽视了应用。高职学生大多数对理论的兴趣不大,对实际应用能够产生一定的兴趣,并较好地进行掌握。所以编写出一本适合高职培养的目标教材是十分重要的,既能满足高职数学建模思想的可持续发展要求,又能充分满足学生的要求,实现高职的培养目标。在高职数学教材的编写上,要重视学生的实际水平,不但要让学生能够学到相应的知识,还要为以后的学习打好基础,培养学生的创造力和进一步深造的能力。教师要把数学建模思想方法运用到教材中,让学生带着问题学习,把讲授的知识点和数学建模思想有机结合,提高学生掌握实际问题的能力,彻底让学生摆脱数学乏味论的问题,能够对所学内容学以致用。
4.提高高职数学教学数学建模思想的方式
教师要重视引导高职教师需要认识到讲授知识并不是教学的终极目标,更主要的是培养学生的应用和创新能力。其教学目的应当是通过科学的数学思维方式培养学生分析问题、解决问题的能力,提高他们自主学习的意识。高职学生的整体知识水平并不是很高,对于很多问题都不能深入地进行思考,遇到难题也没有继续深入研究的动力,缺乏自主创新的意识和独立思考的能力。所以教师需要重视引导的作用,引导学生的思维向更广阔的方向发展,让学生能够用数学思维看待周围的事物,仔细观察、分析各种事物之间的联系和存在的数学模型,并且能够通过数学语言描述事物间的联系,进而用求知的方式解决事物间的实际问题。教师的引导对于学生而言有启迪作用,能够激发学生的求知欲,对数学问题产生兴趣,在实际教学中是一种重要的教学手段。
重视合作的力量教师除了积极引导学生进行数学建模思想外,还要让学生学会用合作的方式提升自己的思维水平。合作可以利用整体的功能弥补一个人思维的狭隘面,解决思考单一问题,促进学生多方面、多角度地思考问题。合作让学生能够尽快找到合适的角色,通过互帮互助的方式共同提高,加快问题的解决。在合作中,学生能够准确利用自己熟悉擅长的环节帮助提高整体的成绩和思维水平,切实加强团队的整体水平和综合素质。团体合作还能让每个学生都参与进去,都有展示和锻炼自己的机会,从而增强自信心,提高学习能力,培养良好的沟通能力,促进学生之间的团结合作,帮助提高学生的交往能力。重视合作的力量,能够帮助学生发现自己的特长和特点,增强信心,提高自我探索精神,同时合作中产生的竞争也能激发学生对数学问题进行深入探究。
重视数学建模过程数学建模的最终目标并不是解决了什么样的问题、获得了什么样的结论,而是在建模过程中学生能够通过自己的努力,不断进行实践和自我否定,最终找到解决具体问题的有效方式。数学建模过程也是一个学习的过程和一个不断提升自我的过程,所以教师要重视数学建模的过程,让学生感受到实践过程的魅力,根据学生的基本状况和不同的特点,综合利用学生的特长和优点提高他们解决实际问题的能力,让学生感受到数学的意义,体会到发现数学的乐趣,养成良好的学习习惯和思维习惯。教师通过引导学生,也要让学生重视数学建模的过程,从数学建模中发现学习的乐趣,产生学好数学的信心和动力,并且通过不断深造发展,能够在数学建模中发挥自己的才能,展现出自己擅长的一面,在建模和交流中获得感受和启发。
5结语
高职院校开设数学建模课程是具有一定意义的,要将建模思想应用到数学教学中,教师就必须适应当前的教学环境,由传统的传授模式转变为创造性地传输方式。教师要不断提高自我教学水平,不断充实自己,用正确的方式引导学生进行学习、实践。教学中只有通过不断创新,根据教学的实际情况提高学生的数学知识应用能力,这样才能不断提高学习效率,帮助学生为以后的学习和工作打下坚实的基础。
大学数学建模学科介绍范文 第二十二篇
赛事概况
作为全国高校规模最大的课外科技活动之一,全国大学生数学建模竞赛创办于1992年,每年举办一次,1994年起由教育部高等教育司和中国工业与应用数学学会共同主办。在教育部领导“扩大受益面,保证公正性,推动教育改革”的指示下,在各级教育行政部门和广大教师的积极指导和参与下,20多年来参赛规模增长迅速,已经发展成为全国高校中规模最大的基础性学科竞赛。
1990年12月7日至9日,上海市举办大学生(数学类)数学模型竞赛,这是我国省、市级首次举办数学建模竞赛。1991年11月23日至24日,中国工业与应用数学学会第一届第三次常务理事会决定成立数学模型专业委员会,决定组织1992年部分城市大学生数学模型联赛。后来,这个委员会实际上成为我国大学生数学建模竞赛的主要组织者。1992年11月27日至29日,部分城市大学生数学模型联赛举行,这是全国性的首届竞赛,10省(市)74所院校的314队参加。此后,大赛规模越来越大,参与的高校和学生越来越多。
该竞赛一般在每年9月举行,赛期3日。竞赛章程规定,大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论。
大赛影响
目前,全国大学生数学建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。该大赛在高校中具有极高的知名度和影响力,获奖证书也是大学生在求职时最有力的佐证之一。因此,每年都有大量的高校学生报名参赛。为鼓励和表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,该竞赛还专门设立了组织工作优秀奖。同样,为了保证竞赛的公平与公正,该竞赛还实行了异议期制度。
2013年9月13日至16日,2013高教社杯全国大学生数学建模竞赛期间,来自全国33个省(市、自治区,包括香港和澳门)以及新加坡、印度的1326所高校2万多参赛队的7万多名大学生参加了本项竞赛。通过专家评阅,最后选出1820队获全国奖,其中本科组一等奖273队,二等奖1292队,分别占参赛总数的和;专科组一等奖44队,二等奖211队,分别占参赛总数的和。
这项竞赛给学生提供了亲身体验运用数学方法和计算机技术解决实际问题的全过程的机会,对培养学生的创新能力和团队协作精神以及推动高校数学教学改革、提高教学质量有着非常重要的意义。数学建模竞赛,对于数学建模在社会上的应用来说是非常大的促进和动力。2007年6月,国内首家数学建模公司――北京诺亚数学建模科技有限公司在北京正式注册。负责人魏永生介绍说,他们的创业理念是为直接和潜在客户提供一种前所未有的数学建模优化及数学模型解决方案,真正为客户实现投资收益的最大化、生产成本费用的最小化。诺亚数学建模正以其专业化的视角不断拓展业务壮大实力,并积极涉足铁路交通、公路交通、物流管理等其它相关领域的数学建模及数学模型解决方案、咨询服务。
大学数学建模学科介绍范文 第二十三篇
说起心得最想说的一句话就是:“年年岁岁花相似,岁岁年年人不同”,去年的时候我也参加了建模培训,以为今年老师和去年讲的差不多,觉得自己不用怎么听就行了,反正内容差不多,其实不然,在此期间,确实有的老师和去年讲的题目一样,可是却发现去年对那些题目根本没有真的理解,还有去年很难理解的东西今年看着比去年好理解多了,有时心里想去年要是静下心来,说不定早理解了。今年只要愿意看,就会理解一些东西,发现并不是像自己想象的那样难。有时人不是被问题的本身打败,有时没进入就被自己打败了。
今年培训的时候,我们见到了不同的面孔,接触了不同的老师,不同的风格。我是计教班的学生,培训的老师有的是数教班的老师,可能要不是建模培训,就无法一览他们的风采。我同学问我:“你在学校参加培训给你们钱不?”我说:“我们跟老师们学到了知识,我们不交钱就好了,怎么给我们钱呀?”的确,我们参加了培训,可能失掉打工的机会,但是我不后悔,在培训的过程中我学到了知识,我们还没有毕业,最重要的是提高自己各方面的知识。而不应该只看到眼前的一点利。
在培训的.过程中,我体验到了友情的温暖。那天我生病了,他们陪我一起看病,那给我力量的双手,那关爱的眼神,那关切的话语,那每一个平凡再也不能平凡的动作。我想不仅仅是一杯水的问题,这一切在脑海里都定格了,他们都是我一生的朋友!他们都说我们是大部队,确实,共同的兴趣,共同的追求,永恒的友谊!
总之,今年的培训,比去年学到了多了一点,其实学习是靠自己的,“师傅领进门,关键是靠自己嘛!”老师只是引导我们,要想让暑期培训的知识起到立竿见影的效果,自己可得好好的“消化”呀!不然的话会觉得用不上,不会用,消化的过程需要静下心来。这是我从去年的和今年的培训中得到的。
大学数学建模学科介绍范文 第二十四篇
为纪念世界传统医药日,xx市中医药学会、xx市针灸学会联合xx注册中医学会定于20xx年10月23日举行大型纪念活动,召开深港中医药论坛。活动主题为“中医经方临床运用”。
现向xx及xx地区全体中医、中西医结合医务人员,活动方案如下:
一、内容:
历代经方家学说的整理和研究;经方在世界的传播与应用研究;经方理论探源;经方验案总结;经方师承经验总结、体会;经方方证研究;经方药证研究;经方合方和加减原则研究;经方疗程与疗效评价标准研究;经方量效关系研究;经方制剂规范研究;经方医学史考证研究;经方相关问题多学科研究、经方教学法研究等。
二、要求:
1.论文具有真实性、科学性、先进性,论点突出,文字准确,语言精练。
2.论文包括全文和中文摘要(300~500字)两部分,原则上全文不超过6000字。摘要包括2~5个关键词;论文要求引文准确,简明扼要,使用规范简化字、标点符号及法定计量单位;
3.会议论文以电子邮件形式发送至电子邮箱(注:凡通过电子邮件投稿者,请在邮箱“主题”一栏以文章名标识,稿件收悉后必有电子邮件回复,如未收到回复,建议重新发送)。论文一律用A4纸打印,字体选用宋体,题目3号字,小标题4号字,内容小4号字,挂号投寄并发送电子邮件。
5.凡不符合上述要求的稿件恕不受理。所有来稿均经专家评审,专家有权对论文提出修改意见,符合要求的论文将汇编成册,正式印刷出版。并组织评选优秀论文,对获奖优秀论文给予一定的奖励。
6.请自留底稿,无论录取与否,一律不予退稿。
7.截稿日期:20xx年9月5日(邮寄以邮戳为准,电子稿件以电脑系统时间为准)
三、联系方式
大学数学建模学科介绍范文 第二十五篇
摘要:
现代物流产业是当今新型的经济产业,国民经济建设中,其已几乎扩展到国民经济的各个领域,具有广阔的发展前景和巨大的发展潜力。同时现代物流业具有极强的综合性,因而正确的物流需求预测对于物流产业的宏观政策制定,抑或是微观层面的企业规划和经营,都具有指导作用。货物周转量是物流需求非常重要的一项指标,文章结合物流需求的特点,通过货物周转量对具有交通中枢地位的武汉市物流需求影响进行预测。本文运用货物周转量,生产总值两指标,结合2000-2012年武汉地区GDP值,基于双变量线性回归模型方法,对交通枢纽武汉进行物流需求分析预测,以说明武汉未来的物流需求情况。
关键词:
货物周转量;回归模型;物流需求预测
引言
武汉,位于中国腹地中心,物流资源丰富,全国重要的交通枢纽,素有“九省通衢”之称。其在发展现代物流业方面具有得天独厚的优势,因而武汉提出了以发展物流来实现本地经济的“跨越式发展”,并已通过把现代物流业作为新的经济增长点列入全市发展计划之中。
然而,作为新型的经济产业,现代物流业具有很强的综合性。无论是在物流产业的宏观决策上,还是物流企业规划和经营的微观层面,都需要以正确的预测为先导。我国经济已由改革开放后的经济快速增长阶段进入到中速发展过程中,在经济调整和转型之中,已充分认识到现代物流业的重要性,高效的现代物流业对于地区经济发展或者国家经济进步的支撑作用越来越明显,。因此,在这样的背景之下,以合理的物流需求预测为基础所作出科学的决策,是保证物流产业健康发展的必要措施。
一、物流需求预测
物流需求预测,就是利用所能涉及到的历史资料和市场信息,利用一定的经验判断、技术方法和预测模型,对未来的物流需求状况进行科学的分析、估算和推断。物流需求预测的目的主要是确定物流服务供应系统所需的能力,同时为其建设规模提供数据方面的依据。
物流需求预测的意义在于指导和调节人们的物流管理活动,从而能够采取适当的策略和措施,以谋求最大的利益。其作用主要体现在:
(一)物流需求预测是是物流管理的必要环节
对物流发展中的各个因素实施控制是物流企业进行规划和经营的前提,而这种控制需要依靠预测来未完成。因此,物流需求预测是物流管理的必要环节,一切的管理活动必须从对信息的分析和预测开始。
(二)物流需求预测能够改善物流管理
物流管理活动中,若能预测了解和把握市场需求的未来变化,那么相关企业就能够采取有效的战略。可以说,物流需求预测是物流管理的重要手段。
(三)物流需求预测能够为物流发展规划和管理经营决策提供重要的科学依据
物流需求预测可以描绘出市场需求的变动趋势,从而推测出物流发展需求的趋势,并进行比较系统的全面的分析和预见,以避免决策的片面性的局限性。
二、武汉物流需求的双变量线性回归模型预测
(一)回归模型的一般形式
回归分析预测法是一种重要的市场预测方法,其是在分析市场现象自变量和因变量之间相关关系的基础上,来建立变量之间的回归方程,并将其作为预测模型。
回归模型的一般形式为:
式①中,X为自变量,Y为因变量, 和 为未知系数, 为误差分量。当然,模型具有实用价值的前提是拟合度良好且回归系数显著。
(二)回归模型的预测
1.指标的确定
货物周转量,是指各种运输工具在报告期内实际运送的每批货物重量分别乘其运送距离的累计数。其不仅包括了运输对象的数量,还包括了运输距离因素,因而能比较全面地反映运输生产结果。其是反映物流业需求的重要指标。
货物周转量的影响因素很多,通过参考大量文献可知,货物周转量与生产总值存在显著的相关性,综合考虑数据的可查询性,本文选取武汉市近年来的货物周转量和生产总值作为变量,进行双变量线性回归模型分析并进行相应预测。
以货物周转量为因变量,武汉生产总值为自变量。下表是武汉市2000年到2012年的相关原始数据:
2.回归模型设定
一般来说,EXCEL和SPSS在预测应用方面均存在各自的优缺点,鉴于此,本文将二者结合起来应用,充分利用SPSS能够准确容易获取预测值,且模型多样化,快速方便的优势以及EXCEL在绘制图形方面简便的特点,将首先用SPSS进行相关预测模型的选择和预测值确定,再用EXCEL进行预测值绘图,从而简单快速的完成相关预测。则可以设定双变量线性回归模型为:
其中,生产总值为 ,货物周转量为 。
用EXCEL作货物周转量和生产总值的散点图,如图1所示:
3.回归分析
根据上述数据,通过统计软件进行线性回归分析:
4.回归方程有效性检验
(1)拟合优度的检验
则从表中可知,相关性系数为R=,相关性明显;同时调整后的拟合系数R2=,说明在货物周转量的总变差中,模型所作出的解释部分达到了,即模型的拟合效果显著。
(2)回归参数的显著性检验
回归方程的显著性检验结果见上表,统计量F=,相应的置信水平为;,结果表明回归方程非常显著;同时常数和自变量系数的回归方程检验的置信水平由表2知为;,即模型的系数显著。
(3)模型预测效果的检验 通过统计软件得出相应回归模型的同时,将该模型从2000-2012年的预测值保存到数据视图中,如下表所示 从表中可知,货物周转量的绝对误差最大值为;相对误差最;平均相对误差为,可以预见,模型总体预测效果良好。 再从预测值和实际值的曲线图形来比较,将原始数据和预测值数据复制到EXCEL中,利用EXCEL绘图简便的特点,绘制中货物周转量的实际值图形和预测值图形,如下图所示 图2 预测值与实际值的曲线比较 从图中可知,回归预测曲线拟合情况良好,从而进一步证明了回归预测模型的有效性。
三、结论分析
通过对武汉2000-2012年相关数据进行线性回归预测,能够得到如下结论:
第一,由回归预测方程 可知,货物周转量与生产总值(GDP)呈正相关关系,具体表现为一单位的GDP增长,能够引起单位的货物周转量;同时由图2的曲线图可知,货物周转量存在明显的上升趋势。
第二,货物周转量是一个总体规模性指标,是从总量上反映物流需求。
这种方法比较概括,虽存在缺陷,但对物流需求的宏观把握,制定宏观物流发展战略还是颇具价值;同时,本文只研究了生产总值对货物周转量的影响,实际上,货物周围量的影响因素很多,比如宏观面上的经济政策,气候条件,微观层面上的运输距离以及货运总量等;另外,货物周转量只是代表物流需求的一个量,并不能完全代表物流需求,因而需要根据实际情况适实地对其加以修正。
参考文献:
[1]王雪瑞,王昭君.基于双变量线性回归模型的物流需求预测[J].物流科技. 2009(09).
[2]杨帅.武汉市物流需求预测[J].当代经济.2007(10).
[3]汪宇翰.预测物流需求的一元线性回归分析方法 [J].商场现代化.2006(13).
[4]李振,王兴秋,吴耀华.货运量回归预测工具EXCEL和SPSS结合应用研究[J].物流科技.2010(08).
[5]张文彤,闫洁.SPSS统计分析基础教程[M]. 北京:高等教育出版社,2004.
大学数学建模学科介绍范文 第二十六篇
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1. 只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
大学数学建模学科介绍范文 第二十七篇
逻辑学的发展在于应用,它的生命也在于应用。逻辑学和知识组织是紧密相连的。知识组织是一门对知识元素的本质内容和知识元素之间的关联进行揭示和序化活动的科学。这个序化过程是依据知识内容的内在模式和规律性,应用知识逻辑和知识处理方法来实现的。无论哪种知识组织方法都离不开逻辑学的指导。讨论知识组织中的逻辑学应用问题的意义在于,知识组织将以逻辑学为重要理论基础,向着更高、更深层次发展。逻辑学为知识组织发展指明了方向,同时也为其发展的正确性提供了保障。在逻辑学的指导下,知识组织的每一过程,包括知识获取、知识表示、知识重组、知识存储都将得到不断完善、创新,最终为人类认识世界、改造世界创造条件。
如何成为优秀的文员呢?要出色的完成一份工作,是需要一套标准来衡量的,文员也有自己的工作标准,下面我们来具体看看成为一个出色的文员的标准::一:良好的文字处理能力,字迹清晰,书写工整.
二:良好的语言表达能力[比如得体的应对电话访问]
三:善于与人交流,这有助于建立两好是人际关系.
四:应变能力强,因为文员经常需要陪同领导,出席会议,接待来客.
五:能严格保守机密,谨慎处理保密文件.
六:善解人意,能准确领会领导的意图.
七:能沉着处理紧急事故,因为领导不可能随时在你旁边.
八:能代表领导出席某些会议并讲话,准确,恰当的传达领导的意见.
九:及时将公司内部,外部信息传达给上司.
十:维护好办公环境,清洁办公场地.
十一:有良好的职业道德和强烈的进取心.
十二:保持充沛的精力,具有一定的活力.
十三:良好的安排时间能力[如出差时间等]
十四:记忆能力好,尤其对人名,电话号码...反应迅速.
十五:有组织能力和团队精神.
十六:协调自己一上司,同事与上司之间的关系.
十七:协助上司具体工作项目的细节准备,材料整理.
十八:积极主动的工作态度.
十九:熟悉公司的所有部门.
二十:谦虚谨慎,知错就改,宽容大度.
二十一:在适当的时候给上司提出意见,建议.
二十二:熟练的管理文件,资料,文档,[归档,保存,查找,备份]
二十三:会多种语言,能快速适应各种文化环境.
二十四:掌握必要的电脑知识.
二十五:尊重领导和同事.热情,大方.文员是公司的基层职员,一般从事文件处理工作,也有许多的公司从薪金上划分员
工/文员/职员的级别,但有些公司对文员的要求很高,也赋予一些权力。也有可能
是踏入管理阶层的第一步。
办公室文员的工作内容
办公室文员(会议、文书、印信、档案、接待、宣传栏、文件报纸收发)工作职责:
1. 接听、转接电话;接待来访人员。
2. 负责办公室的文秘、信息、机要和保密工作,做好办公室档案收集、整理工作。
3. 负责总经理办公室的清洁卫生。
4. 做好会议纪要。
5. 负责公司公文、信件、邮件、报刊杂志的分送。
6. 负责传真件的收发工作。
7. 负责办公室仓库的保管工作,做好物品出入库的登记。
8. 做好公司宣传专栏的组稿。
9. 按照公司印信管理规定,保管使用公章,并对其负责。
10. 做好公司食堂费用支出、流水帐登记,并对餐费做统计及餐费的收纳、保管。
11. 每月环保报表的邮寄及社保的打表。
12. 管理好员工人事档案材料, 建立、完善员工人事档案的管理,严格借档手续。
13 社会保险的投保、申领。
14 统计每月考勤并交财务做帐,留底。
15 管理办公各种财产,合理使用并提高财产的使用效率,提倡节俭。
16. 接受其他临时工作.
行政文员职位说明书岗位名称行政文员任职人所在部门企管部岗位定员 直接上级
企管部经理主管签字执行日期应具备的条件和要求.一、学历:中专以上文化程度;
二、工作经验:有文件管理工作经验;
三、应具备的知识:
1、文秘知识;
2、文件
管理知识;
3、会做账表;
四、具有强烈的责任心与团队意识;工作内容及方法简述
一、负责公司各类文件及外来文件的收集、发放、存档、借阅工作;
二、负责起草
公司行政会议及其他例会的会议纪要;
三、负责各类文件的拆封、登记、传阅、催
办等工作,做好公司各类档案的接受、整理、保管和统计工作,实行集中统一管理;
四、负责各类文件档案的入库工作并做好统计;
五、负责档案的借阅、复制和利用,
根据需要,编制必要的检索工具和参考资料,注意信息反馈,为公司各部门的档案
查阅提供方便,认真做好使用记录;
六、及时收集各类档案,做好平时的立卷工作,
并做好整理、修复、装订、编目和归档工作;
七、负责归档文件的验收、鉴定,做
到归档文件完整、签署齐全、装订整齐、分类科学、使用方便;
八、负责定期清查
档案,及时催讨借出的档案,做到账物相符;
九、每天做好档案室的清洁工作和温
湿度记录,落实防盗、防火、防尘等安全措施,对损坏或变质的档案,及时进行修
补和复制;
十、完成部门经理临时交办的相关任务。责任
一、对文件数据的准确性
负责;
二、对所保管的文件安全保密负责;对工作程序的执行效果负责。权利有权
拒绝不符合公司要求的部门或人员查阅文件 ……
行政前台文员工作职责
1、接待工作:访客进入接待厅,应抬头行注目礼“您好,请问找谁?”,并请访客入坐,
请示后引入相关区域,在一分钟内端上茶水,并负责加水、更新烟缸;
2、卫生清洁工作:烟缸不得超过五个烟蒂,访客离去后,三分钟内清洗好烟缸、
茶杯;
3、总机服务工作:铃响三声内必须接听,“您好,„XX公司„。”;若自动转拨,三
分钟内必须转为人工;来电找“总经理”,判定是广告类,不应直接转入,应问清何
事后转接相关部门;
4、传真信息必须在五分钟内送达相关人员;
5、负责收发管理报纸、信函;
6、安全工作:下班前检查复印机关机,关闭所有电源,负责关好门窗;
7、接受行政助理安排的其它工作。
人事文员的工作就是协助主任做好日常管理工作。树立为领导服务、其它部门服务
的思想。
办公室文员(会议、文书、印信、档案、接待、宣传栏、文件报纸收发)工作职责:
1. 接听、转接电话;接待来访人员。
2. 人员的到职和离职的相关手续的办理。
3. 负责公司员工薪资异动的人事基本资料的提供。
4. 员工调休假、请假、日出勤稽查统计表并及时将其异常状况江报於上级。
5. 负责公司公文、信件、邮件、报刊杂志的分送。
6. 负责传真件的收发工作。
7. 负责办公室仓库的保管工作,做好物品出入库的登记。
8. 做好公司宣传专栏的组稿。
9. 按照公司印信管理规定,保管使用公章,并对其负责。
10. 做好公司食堂费用支出、流水帐登记,并对餐费做统计及餐费的收纳、保管。
11. 每月环保报表的邮寄及社保的打表。
12. 接受其他临时性工作。
13. 管理好员工人事档案材料, 建立、完善员工人事档案的管理,严格借档手续。
14. 社会保险的投保、申领。
15. 统计每月考勤并交财务做帐,留底。
16. 管理办公各种财产,合理使用并提高财产的使用效率,提倡节俭。
1、人事管理工作:招聘、辞退手续,人员培训等。
2、人事事务处理,员工档案编档与管理有序化。
3、办公室工作:文档打印、收发传真,日常考勤。
尊敬的校领导:
你们好!我是08路桥(1)班的朱秋艳,作为一名已有7年团龄的老团员,我积极参加团的活动,正确行使团章规定的权利,模范履行团员义务。因此,我志愿申请泰州职业技术学院系级“优秀团员”称号。请院领导看完我的申报材料后给予批评和鼓励.。
共青团员作为中国xxx的后备军,有着不可替代的作用,作为共青团的一员,我是自豪的.更主要的是我明白我应该在学习上争取名列前茅,在政治上争取先进,在活动中争取积
极.。屈原曾讲“路漫漫其修远兮,吾将上下而求索”,人需要自己不断的挑战自己,超越自己,这样的人生才有意义。因此再进大学初,我就为自己制定了大学生获得短暂计划,以此勉励自己,提醒自己,争取能在大学3年提高自身素质,培养自身的综合学习能力,为自己美好的明天打下坚实的基础。
在我从成为中国共青团团员之时就严格要求自己,步入大学,作为中国社会主义事业的接班人,祖国明天的建设者,这更成为我不断努力进取,不断提高思想觉悟的动力。大一的大一学期,我向学院党总支提交了入党申请书,表明了我入党的决心。在实践过程中,积极履行申请书中给自己体的要求,认真学习“三个代表”,“科学发展观”重要思想和党的路线,方针,决策,不断提高自己的思想觉悟,力求能更好的为同学服务,为社会服务.。
为了能更好的锻炼自己,也为了提高自身的社会实践能力,我积极参加班级,学院组织的集体活动,另外还自愿参加了泰州市的交通协管,成为了一名光荣的志愿者。积极响应青志协的号召,在学校里,我帮助老师整理资料,打扫卫生,成为老师的好帮手。在实践中切实履行作为一个共青团员的光荣义务,能够和其他同学,老师一起学习、工作,我感到自己正在迅速的成长起来。
一个优秀的共青团员应该处处起模范带头作用,学习上更应如此.追求永无止境,学习永无止境,时时刻刻严格要求自己,我深知一个优秀的共青团员要用知识来武装自己.努力,认真,本着实事求是的原则学号每个学科的课程,积极配合老师的工作,加强与老师之间的联系,是班级拥有一个良好的学习氛围.,另外还广泛阅读和自身专业有相关联系的学科书籍,扩大自己的知识面,是自身的综合素质进一步提高.
人海茫茫,大家能相聚在泰职院是一种缘分,因此我格外珍惜这段友谊.在生活上,搞好同学间的关系,互帮互助,互相学习,为生活增添了不少乐趣.在学习之余和好友一起去打球、跑步,一起去做社会调查,这不仅丰富了我们的课余生活,而且慢慢的在活动中使我们明白了团队精神的重要性.
虽然在莘莘学子中,我并非最好,但我拥有不懈奋斗的意念,愈战愈强的精神和忠实肯干的作风,这才是最重要的。追求永无止境,奋斗永无穷期。我要在新的起点、新的层次、以新的姿态、展现新的风貌,书写新的记录,创造新的成绩,我的自信,来自我的能力。在此我提出评选优秀团员的申请,不管我能否选上,我相信:奋斗和追求是我人生的主旋律,我依然执着。“与时间抢跑,向对手致敬”,这是我的座右铭,良好的心态+认真的工作学习态度,相信我会成功,因为我会努力!
申请人:朱秋艳
2010-3-25
前台文员转正自我鉴定范文
首先,感谢您给我机会到XXX公司从事前台文员工作。 我于20xx年3月10日成为公司的试用员工,在试用期届满之际,根据公司的规章制度,现申请转为公司正式员工。
建筑这个行业是我以前很少接触的,和我的专业知识相差也较大,但是领导和同事的耐心指导,使我在较短的时间内适应了公司的工作环境,也熟悉了公司的整个操作流程。作为一名前台文员,我一直严格要求自己,认真及时做好领导布置的每一项任务;专业和非专业上不懂的问题虚心向同事学习请教,不断提高充实自己,希望能为公司做出更大的贡献。当然,初入公司,难免出现一些小差小错需领导指正;但前事之鉴,后事之师,这些经历也让我不断成熟,在处理各种问题时考虑得更全面,杜绝类似失误的发生。
在此,我要特地感谢领导和同事对我的入职指引和帮助,感谢他们对我工作中出现的失误的提醒和指正。 经过这三个月,我已经能够很好的完成我的岗位职责,例如内部接待工作;总经理办公室杂务;办公室文件打印、校对、复印;办公用品的管理;公司人员考勤的登记等。当然我还有很多不足,处理问题的经验方面有待提高,团队协作能力也需要进一步增强,需要不断继续学习以提高自己的能力。
在这三个月的工作中,通过领导的指导与教育,让我学到了很多新的知识,也感悟了很多。我迫切的希望以一名正式员工的身份在这里工作,实现自己的奋斗目标,体现自己的人生价值,和公司一起成长。在此我提出转正申请,恳请领导给我继续锻炼自己、实现理想的机会。我会用谦虚的态度和饱满的热情做好我的本职工作,为公司创造价值,同公司一起展望美好的未来!
转正自我鉴定范文
从xx年7月25日入职成为试用员工到现在,来xx就职已经两个月了,从开始对一切的陌生和不懂,到努力适应,我在公司同事,领导的关心和帮助下基本完成了各项工作,已经逐渐习惯和适应这份工作,短期内便熟悉了公司办公室各项工作,明确了工作的程序、方向,有了明确的工作思路,在思想觉悟上有了更进一步的提高,工作也慢慢进入了状态,那中间学会了很多东西,也对自身取得了相应的进步。为了总结工作经验,继续发扬成绩同时也克服存在的不足,现将这两个月的工作做如下简要总结:
这段时间,我任职为公司总部前台行政文员这一职位。
一开始来到公司,是由一位同事教我的,她给了我一份前台文员工作交接表,上面很清楚的列明了这一职位该做的工作范围,随后我也参加了公司的员工培训,更深的学习了企业文员和更加的了解了公司的内部结构,让我对自己的这份工作更加的熟悉,操作减少了难度。
我总结了下我日常主要工作是
1、负责接听电话,回答客户的问题。
2、接待来访客人,记录来访的资料,让来访客人登记,开启玻璃门引导去相应的地点。
3、负责发放员工及促销员入职,离职,调场表和工衣的发放。
4、负责公司各门店以及总部和售后的办公用品,日用品的发放和登记。
5、收发总部每日的报纸传真,快递包裹等。将各人快递包裹及时派发,或打电话通知
6、总部一楼led显示屏宣传语的管理工作。
7、审批oa上个人以及门店的行政事务申请,比如名片申请等。
8、协助其他同事行政事务如复印等。
都说前台是公司对外形象的窗口,接待公司来访的客人要以礼相待,接电话要态度和蔼,处理日常事务要细心认真,对待同事要虚心真诚…点点滴滴都让我在工作中学习,在学习中进步。
前台工作说难也不难,说简单也不简单,因为事情繁杂,和各部门打交道也比较多,二个多月的工作也让我产生了危机意识,工作中难免会碰到一些坎坷,所以单靠我现在掌握的知识和对公司的了解是不够的,我想以后的工作中也要不断给自己充电,拓宽自己的知识,减少工作中的空白和失误。刚开始工作,难免出现一些小差小错;但前事之鉴,后事之师,这些经历也让我不断成熟,在处理各种问题时考虑得更全面,杜绝类似失误的发生。
今后我要以积极乐观的工作态度投入到工作中,踏踏实实地做好本职工作,及时发现工作中的不足,及时地和部门沟通争取把工作做好,服务态度要良好, 接待客人要不断积累经验, 要给客人留下良好印象,准确地转接电话。如果知道某个部门没人, 会提醒来电方, 并简要说明可能什么时间有人, 或者在力所能及的范围内, 简要回答客户的问题,努力打造良好的前台环境。要保持好公司的门面形象,做一个合格,称职的员工。这也一直是今后工作努力的目标和方向!
前台文员转正自我鉴定
大学数学建模学科介绍范文 第二十八篇
重点:数模论文的格式及要求
难点:团结协作的充分体现
一、写好数模论文的重要性
1.数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据.
2.数模论文是培训(或竞赛)活动的最终成绩的书面形式。
3.写好论文的训练,是科技论文写作的一种基本训练。
二、数模论文的基本内容
1,评阅原则:
假设的合理性;
建模的创造性;
结果的合理性;
表述的清晰程度
2,数模论文的结构
1、问题的提出:综述问题的内容及意义
2、模型的假设:写出问题的合理假设,符号的说明
3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等
4、模型的求解:求解及算法的主要步骤,使用的数学软件等
5、模型检验:结果表示、分析与检验,误差分析等
6、模型评价:本模型的特点,优缺点,改进方法
7、参考文献:限公开发表文献,指明出处
8、附录:计算框图、计算程序,详细图表
三、需要重视的问题
表述:准确、简明、条理清晰、合乎语法。
字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表
简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论2016年数学建模论文格式要求2016年数学建模论文格式要求。还可作那些推广。
1、建模准备及问题重述:
了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。
在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。
2、模型假设、符号说明
基本假设的合理性很重要
(1)根据题目条件作假设;
(2)根据题目要求作假设;
(3)基本的、关键性假设不能缺;
(4)符号使用要简洁、通用。
3、模型的建立
(1)基本模型
1)首先要有数学模型:数学公式、方案等
2)基本模型:要求完整、正确、简明,粗糙一点没有关系
(2)深化模型
1)要明确说明:深化的思想,依据,如弥补了基本模型的不足……
2)深化后的模型,尽可能完整给出
3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。
能用初等方法解决的、就不用高级方法;
能用简单方法解决的,就不用复杂方法;
能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。
4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在
建模中:模型本身,简化的好方法、好策略等;
模型求解中;
结果表示、分析,模型检验;
推广部分。
5)在问题分析推导过程中,需要注意的:
分析要:中肯、确切;
术语要:专业、内行;
原理、依据要:正确、明确;
表述要:简明,关键步骤要列出;
忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。
4、模型求解
(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密;
(2)需要说明计算方法或算法的原理、思想、依据、步骤
若采用现有软件,要说明采用此软件的理由,软件名称;
(3)计算过程,中间结果可要可不要的,不要列出2016年数学建模论文格式要求论文。
(4)设法算出合理的数值结果。
5、模型检验、结果分析
(1)最终数值结果的正确性或合理性是第一位的;
(2)对数值结果或模拟结果进行必要的检验。当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进;
(3)题目中要求回答的问题,数值结果,结论等,须一一列出;
(4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据;
(5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页)
数值结果表示:精心设计表格;可能的话,用图形图表形式。
大学数学建模学科介绍范文 第二十九篇
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种教学方法运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者总结了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
大学数学建模学科介绍范文 第三十篇
矿属各支部:
20xx年,是我矿实现原煤生产大跨越的一年,是全矿干群诚信服从求进取,忠诚敬业创佳绩的一年,一年来,矿思想政治工作研究会充分发挥思想政治工作优势,大力开展形式多样的思想政治工作研究活动,把思想政治工作溶入到了企业的安全生产、经营管理等各项工作之中,为我矿健康持续稳定发展提供了强大的发展动力,10月份矿党委政研会结合我矿新时期工作的特点,精心选编了二十个思想政治工作调研课题,在全矿干部中开展征集活动,截止11月30日共收到调研论文94篇,经过政研会认真评选,评出优秀论文30篇。为表彰先进,激励后进,不断开创政研工作新局面,矿党委决定对范书友等30名获得优秀论文的同志进行公开表彰,名单如下:
一等奖5人:范书友、史宗智、李治民、刘步一、李现志
二等奖10人:刘会钊、梅红仁、周振乾、陈焕琴、刘建国
马金才、马志军、王峰、魏新刚、韦大鹏
三等奖15人:杨西勋、赵春兰、xxx旦、王世民范心顺
裴建子、严献仓、张毅、上官建民、贾年松
范秀英、郅玲玲、江茂东、范三流、刘建停
为切实推进我矿政治研究工作再上新台阶,矿党委希望受到表彰的同志要珍惜荣誉,戒骄戒躁,真心实意,真抓实干,按照我矿政研会要求,认真做好明年的思想政治工作,把取得的成绩当作新的起点,把获取荣誉当作前进的动力,扎扎实实地做好各项工作。矿党委号召,基层支部、机关各科室,要以先进为榜样,紧紧围绕20xx年xxx以严治矿,科学决策,综合管理,全面提高xxx的工作思路,为实现全年原煤生产110万吨,奋斗目标130万吨,创水平目标140万吨的整体工作布置,在全矿兴起“赶先进,创佳绩”的热潮,为我矿物质文明、精神文明和政治文明健康协调发展做出新的更大的贡献。
xxx千秋煤矿委员会
年十二月七日