数学建模论文(推荐6篇)

数学建模论文 篇一

标题:基于数学建模的交通拥堵预测与优化研究

摘要:交通拥堵问题一直困扰着现代城市的发展和居民的出行。为了解决这一问题,本文基于数学建模的方法,对交通拥堵进行了预测与优化研究。首先,我们收集了大量的交通数据,包括车流量、速度、道路等级等信息。然后,我们利用统计学方法对这些数据进行分析,找出交通拥堵的主要原因和影响因素。接着,我们建立了数学模型,通过模拟不同交通流量、道路状况等场景,预测交通拥堵的发生概率和程度。最后,我们提出了一系列优化方案,包括交通信号灯优化、道路规划优化等,以减少交通拥堵的影响。

关键词:数学建模;交通拥堵;预测;优化;交通数据

引言:随着城市化进程的加快,交通拥堵问题越来越突出。交通拥堵不仅导致出行效率低下,还给环境和居民生活带来了负面影响。因此,研究交通拥堵的预测与优化方法,对于改善城市交通状况具有重要意义。

方法:本文采用了数学建模的方法对交通拥堵问题进行研究。首先,我们收集了某城市的交通数据,包括车流量、速度、道路等级等信息。然后,我们利用统计学方法对这些数据进行分析,找出交通拥堵的主要原因和影响因素。接着,我们建立了数学模型,通过模拟不同交通流量、道路状况等场景,预测交通拥堵的发生概率和程度。最后,我们提出了一系列优化方案,包括交通信号灯优化、道路规划优化等,以减少交通拥堵的影响。

结果与讨论:通过对交通数据的分析和数学建模的预测,我们发现交通拥堵主要受到车流量、路口信号灯的影响。在模型的基础上,我们提出了一种交通信号灯优化算法,通过调整信号灯的时长和配时方案,可以有效减少交通拥堵。此外,我们还提出了一种基于车辆轨迹数据的道路规划优化算法,可以帮助驾驶员选择最短、最畅通的路线,减少交通拥堵的发生。实验结果表明,我们的优化方案在减少交通拥堵方面取得了较好的效果。

结论:本文基于数学建模的方法,对交通拥堵进行了预测与优化研究。通过对交通数据的分析和数学模型的建立,我们找出了交通拥堵的主要原因和影响因素,并提出了一系列优化方案。这些方案在实验中取得了良好的效果,能够有效减少交通拥堵的发生,提高城市交通的效率和居民的出行体验。

数学建模论文 篇二

标题:基于数学建模的疫情传播模拟与控制研究

摘要:新型冠状病毒疫情的爆发给全球带来了巨大的冲击。为了更好地应对和控制疫情的传播,本文基于数学建模的方法,对疫情传播进行了模拟与控制研究。首先,我们收集了疫情数据,包括感染人数、病毒传播速度等信息。然后,我们建立了数学模型,通过模拟不同的传播场景,预测疫情的发展趋势和蔓延速度。接着,我们提出了一系列控制措施,包括隔离、封控、疫苗接种等,以减缓疫情的传播和降低感染风险。

关键词:数学建模;疫情传播;模拟;控制;疫情数据

引言:新型冠状病毒疫情的爆发引起了全球的关注和恐慌。为了更好地应对和控制疫情的传播,研究疫情传播的模拟与控制方法具有重要意义。通过数学建模的方法,可以对疫情的发展趋势和蔓延速度进行预测,并提出相应的控制措施。

方法:本文采用了数学建模的方法对疫情传播进行研究。首先,我们收集了疫情数据,包括感染人数、病毒传播速度等信息。然后,我们建立了数学模型,通过模拟不同的传播场景,预测疫情的发展趋势和蔓延速度。最后,我们提出了一系列控制措施,包括隔离、封控、疫苗接种等,以减缓疫情的传播和降低感染风险。

结果与讨论:通过对疫情数据的分析和数学建模的模拟,我们可以预测疫情的发展趋势和蔓延速度。在模型的基础上,我们提出了一系列控制措施,包括隔离、封控、疫苗接种等。实验结果表明,这些控制措施可以有效减缓疫情的传播,降低感染风险,保护公众的健康安全。

结论:本文基于数学建模的方法,对疫情传播进行了模拟与控制研究。通过对疫情数据的分析和数学模型的建立,我们可以预测疫情的发展趋势和蔓延速度,并提出相应的控制措施。这些措施在实际应用中取得了良好的效果,对于控制疫情的传播和保障公众健康具有重要意义。

数学建模论文 篇三

  大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

  一、数学建模的含义及特点

  数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

  1.准备阶段

  主要分析问题背景,已知条件,建模目的等问题。

  2.假设阶段

  做出科学合理的假设,既能简化问题,又能抓住问题的本质。

  3.建立阶段

  从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

  4.求解阶段

  对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

  5.验证阶段

  用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

  二、加强数学建模教育的作用和意义

  (一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

  数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

  (二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

  数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

  (三)加强数学建模教育有助于培养学生的创造性思维和创新能力

  所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成" .现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

  很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程 .

  (四)加强数学建模教育有助于提高学生科技论文的撰写能力

  数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

  (五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作 .

  三、开展数学建模教育及活动的具体途径和有效方法

  (一)开展数学建模课堂教学

  即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

  案例的选取和课堂教学的组织。

  教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

  1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

  2. 原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

  3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

  案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的 .

  (二)开展数模竞赛的专题培训指导工作

  建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

  (三)建立数学建模网络课程

  以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。

  (四)开展校内数学建模竞赛活动

  完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

  如 20xx 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 20xx 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

  (五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

  全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

  四、结束语

  数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

数学建模论文 篇四

  走美杯”是"走进美妙的数学花园"的简称。

  "走进美妙的数学花园"中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届"走进美妙的数学花园"中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。 "走进美妙的数学花园"中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过"趣味数学解题技能展示"、"数学建模小论文答辩"、"数学益智游戏"、"团体对抗赛"等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。 著名数学家陈省身先生两次为同学们亲笔题词"数学好玩"和"走进美妙的数学花园",大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从"学数学"到"用数学"过程的转变,从而进一步推动我国数学文化的传播与普及。

  "走美"活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

  “走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

  1、活动对象

  全国各地小学三年级至初中二年级学生

  2、总成绩计算

  总成绩=笔试成绩x70%+数学小论文x30%

  笔试获奖率:

  一等奖5%,二等奖10%,三等奖15%。

  3、笔试时间

  每年3月上、中旬。

  报名截止时间:每年12月底。

  走美杯比赛流程

  1、全国组委会下发通知,各地组委会开始组织工作

  2、学生到当地组委会报名,填写《报名表》

  3、各地组委会将报名学生名单全部汇总至全国组委会

  4、全国"走进美妙的数学花园"趣味数学解题技能展示初赛(全国统一笔试)

  5、学生撰写数学建模小论文

  6、全国组委会公布初赛获奖名单并颁发获奖证书

  7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

  8、各地按照组委会要求提交数学建模小论文

  9、前各地组委会上报参加全国总论坛学生名单

  10、全国总论坛和表彰活动

数学建模论文 篇五

  一、高等数学教学的现状

  (一) 教学观念陈旧化

  就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

  (二) 教学方法传统化

  教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

  二、建模在高等数学教学中的作用

  对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

  高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

  三、将建模思想应用在高等数学教学中的具体措施

  (一) 在公式中使用建模思想

  在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

  (二) 讲解习题的时候使用数学模型的方式

  课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

  (三) 组织学生积极参加数学建模竞赛

  一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

  四、结束语

  高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

  参考文献

  [1] 谢凤艳,杨永艳。 高等数学教学中融入数学建模思想[J]。 齐齐哈尔师范高等专科学校学报,20xx ( 02) : 119 —120。

  [2] 李薇。 在高等数学教学中融入数学建模思想的探索与实践[J]。 教育实践与改革,20xx ( 04) : 177 —178,189。

  [3] 杨四香。 浅析高等数学教学中数学建模思想的渗透 [J]。长春教育学院学报,20xx ( 30) : 89,95。

  [4] 刘合财。 在高等数学教学中融入数学建模思想 [J]。 贵阳学院学报,20xx ( 03) : 63 —65。

数学建模论文 篇六

  1素质教育与高职数学课程改革

  在职业教育大发展的初期,在“工具论”和功利主义教育思潮影响之下,一度把为专业课服务作为数学课的唯一职能,甚至普遍弱化数学课的地位,一些学校的数学课程被大幅缩减甚至被取消。部分专家学者及时对唯技能、唯工具、忽视素质教育等错误思潮进行了批判,20xx年8月,教育部颁布文件《教育部关于推进高等职业教育改革创新,引领职业教育科学发展的若干意见》,强调改革培养模式,增强学生可持续发展能力,重视学生全面发展,推进素质教育,增强学生自信心,满足学生成长需要,促进学生人人成才。公共基础课是高职院校素质教育的主渠道,为素质教育服务是高职院校基础课改革的方向。高职院校基础课的功能主要有为专业课服务和为素质教育服务两个方面。如果真正明确高素质技能型人才的培养目标,真正重视学生的终身发展,而不是把高职院校视为技能培训机构,就应该高度重视基础课的地位。数学的基础性与广泛的应用性不仅使数学成为学习其他科学的基础和工具,而且也使数学成为提高高职学生全面素质极好的载体。高等数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一门科学,而且是一种文化。它内容丰富,理论严谨,应用广泛,影响深远。然而,当前多数高职院校数学课堂仍是以传授课本上的理论知识为主,课程内容主要局限于数学的知识成分,很少涉及到数学思想、精神、学生情感、态度、价值观等观念成分,很少涉及到解决实际问题的能力,而较多地让学生做习题,却较少地让学生想问题。在做习题中,又较多地在操作层面上训练解题方法,而较少地在思维层面上培养数学素养,重知识,轻思想;重技巧,轻能力。大多数学生对数学的思想、精神了解得较肤浅,甚至误以为学数学就是为了会做题、能应付考试,不知道数学方式的理性思维的重大价值,不了解数学在生产、生活实践中的重要作用,不理解数学文化与诸多文化的交汇。所选用的教材由于过多考虑数学学科的知识本位,学生通过教材看到的是定义、公式、定理和性质的堆积和罗列,看不到实际应用的案例,因此学习积极性不高,学习效果不好。况且高职学生基础相对较差,教学效果更不如人意。

  2数学建模融入数学课程是高职数学课改的有效切入点

  近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。

  2.1数学建模融入数学课程能够培养和提高学生的学习兴趣

  学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。

  2.2数学建模思想融入数学课程能够加快高职学校素质教育的步伐

  高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。

  2.3数学建模思想融入数学课程能够提升学生各方面的能力

  学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。

  3数学建模教学实践及学生创新能力的提高

  近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。

  3.1融入数学建模思想精心设计教学内容

  按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的`思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析→基本知识讲解→触类旁通→举一反三,归纳总结→掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。

  3.2灵活多样的教学方法与现代教学手段相结合

  在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。

相关文章

语言学毕业论文提纲(优秀4篇)

导语:写好论文提纲能够便于作者有条理地安排材料、展开论证。接下来小编整理了语言学毕业论文提纲范文。文章希望大家喜欢!  语言学毕业论文提纲范文一  中文摘要 4-6  Abstract 6-7  第1...
论文2012-01-06
语言学毕业论文提纲(优秀4篇)

互联网产品设计探讨论文(精彩3篇)

摘要: 基于概念设计定位方法,分析方法中的外部因素、内部因素、目标系统的关系,剖析互联网产品设计,尝试找到其背后的设计理论依据,并分析其合理性,并寻找找到互联网产品设计过程中与定位方法对应的关系。 关...
论文2014-04-09
互联网产品设计探讨论文(精彩3篇)

生态环境保护可持续发展研究论文(最新4篇)

在平时的学习、工作中,大家都写过论文,肯定对各类论文都很熟悉吧,论文可以推广经验,交流认识。相信写论文是一个让许多人都头痛的问题,以下是小编精心整理的生态环境保护可持续发展研究论文,希望对大家有所帮助...
论文2019-02-04
生态环境保护可持续发展研究论文(最新4篇)

楼宇智能化在建筑电气应用中存在的问题与对策研究论文(最新3篇)

摘要:伴随着我国当今国民经济、科技水平的增长, 各项建筑领域中纷纷将现金的科学应用技术运用到工程建筑施工过程中。其中, 在建筑电气工程领域中, 楼宇智能化技术的应用变得越来越普遍, 但是在此基础上,...
论文2014-01-07
楼宇智能化在建筑电气应用中存在的问题与对策研究论文(最新3篇)

安娜·卡列宁娜和林黛玉人物形象之比较初探的论文【精选3篇】

论文关键词:文学创作背景个人经历 论文摘要:试图通过对《安娜·卡列宁娜》和《红楼梦》中女主人公的比较,揭示产生相同人物形象的历史背景和作家的人生经历。 在世界文学进程中,列夫·托尔斯泰和曹雪芹是两位彼...
论文2014-03-01
安娜·卡列宁娜和林黛玉人物形象之比较初探的论文【精选3篇】

师德建设论文 -论文【推荐3篇】

十年前,我选择了教师这一职业,踏上了教坛这方净土,登上了三尺讲台,师德建设论文。弹指一挥间,回望过去岁月的点点滴滴,细数往昔的故事,可说是酸甜苦辣兼而有之。1999年9月,师范毕业19岁的我到彭堡镇曹...
论文2015-09-04
师德建设论文 -论文【推荐3篇】