数据挖掘论文【最新6篇】

数据挖掘论文 篇一

标题:基于分类算法的电子商务用户购买行为分析

摘要:随着电子商务行业的迅速发展,对用户购买行为进行准确分析和预测变得越来越重要。本文基于分类算法,对电子商务用户的购买行为进行了深入研究和分析。首先,我们使用了一个大规模的电子商务数据集,提取了与用户购买行为相关的特征。然后,我们使用了三种常用的分类算法,包括决策树、朴素贝叶斯和支持向量机,对用户购买行为进行了预测和分类。最后,我们通过对比实验结果,评估了这三种算法在预测电子商务用户购买行为方面的性能。实验结果表明,支持向量机算法在准确性和稳定性方面表现最佳,能够有效地预测用户的购买行为。

关键词:数据挖掘,电子商务,用户购买行为,分类算法,支持向量机

引言:随着互联网技术的不断发展和普及,电子商务行业已经成为了现代商业领域的重要组成部分。越来越多的消费者选择在网上购物,这为企业提供了更多的机会和挑战。对用户购买行为进行准确分析和预测可以帮助企业更好地了解用户需求,提供个性化的产品和服务,从而提高销售额和用户满意度。

方法:本研究使用了一个大规模的电子商务数据集,其中包含了用户的购买记录、浏览记录、点击记录等。我们首先对这些数据进行了预处理,包括数据清洗和特征提取。然后,我们使用了决策树、朴素贝叶斯和支持向量机三种常用的分类算法对用户购买行为进行了预测和分类。在实验中,我们将数据集分为训练集和测试集,使用训练集训练模型,然后使用测试集评估模型的性能。

结果和讨论:实验结果表明,三种分类算法都可以用于预测电子商务用户的购买行为。决策树算法具有简单直观、易于理解的优点,但在处理大规模数据集时可能会出现过拟合的问题。朴素贝叶斯算法基于概率模型,能够有效处理高维数据,但对于特征之间的相关性较强的情况可能会出现较大误差。支持向量机算法在处理非线性问题和高维数据时表现出色,能够提供较高的准确性和稳定性。

结论:本研究基于分类算法对电子商务用户的购买行为进行了分析和预测。实验结果表明,支持向量机算法在预测用户购买行为方面表现最佳。这些研究结果对于电子商务企业改善用户体验、提高销售额具有重要意义。未来的研究可以进一步探索其他分类算法的应用,以提高购买行为预测的准确性和效果。

数据挖掘论文 篇二

标题:基于关联规则挖掘的网络用户行为分析

摘要:网络用户行为分析对于互联网企业的发展和用户体验的提升具有重要意义。本文基于关联规则挖掘技术,对网络用户的行为进行了深入研究和分析。我们使用了一个大规模的网络用户行为数据集,提取了与用户行为相关的特征。然后,我们使用了Apriori算法对用户行为进行关联规则挖掘。最后,我们通过对挖掘结果的分析和解释,揭示了网络用户行为的一些规律和趋势。

关键词:数据挖掘,关联规则挖掘,网络用户行为,Apriori算法

引言:随着互联网的快速发展,越来越多的人选择在网络上进行各种活动,如浏览网页、购物、社交等。网络用户的行为数据蕴含着丰富的信息和价值,对于互联网企业来说,准确分析和理解用户行为是实现个性化推荐、提供定制化服务的基础。

方法:本研究使用了一个大规模的网络用户行为数据集,其中包含了用户的浏览记录、点击记录、购买记录等。我们首先对这些数据进行了预处理,包括数据清洗和特征提取。然后,我们使用了Apriori算法对用户行为进行关联规则挖掘。在实验中,我们设置了支持度和置信度的阈值,过滤掉低频和低置信度的关联规则,保留具有较高频度和置信度的规则。

结果和讨论:通过对挖掘结果的分析和解释,我们发现了一些有趣的规律和趋势。例如,我们发现用户在购买某个商品之前通常会浏览该商品的详细信息,点击相关的广告或推荐,这为企业进行个性化推荐提供了依据。另外,我们还发现用户购买某个商品时可能会同时购买其他相关的商品,这可以用于提高销售额和交叉销售。

结论:本研究基于关联规则挖掘技术对网络用户行为进行了分析和研究。通过挖掘关联规则,我们揭示了一些有价值的规律和趋势,对于互联网企业提供个性化推荐和定制化服务具有重要意义。未来的研究可以进一步探索其他数据挖掘技术的应用,以提高对网络用户行为的理解和预测能力。

数据挖掘论文 篇三

  【摘要】

由于我国的信息技术迅速发展,传统档案管理的技术已经不能满足现代的信息需求,数据挖掘技术的应用为档案管理工作效率的提升带来便利。本文通过说明数据挖掘技术的有关内容,阐明数据挖掘技术的相关知识,并对数据挖掘技术在档案管理工作中的实际运用来进行举例分析。

  【关键词】

数据挖掘技术;档案管理;分析运用

  由于信息技术的迅速发展,现代的档案管理模式与过去相比,也有了很大的变化,也让如今的档案管理模式有了新的挑战。让人们对信息即时、大量地获取是目前档案管理工作和档案管理系统急切需要解决的问题。

  一、数据挖掘概述

  (一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从而达到良好的档案管理工作效果。(二)数据挖掘技术分析。数据挖掘技术分析的方法是多种多样的,其主要方法有以下几种:1.关联分析。指从已经知道的信息数据中,找到多次展现的信息数据,由信息的说明特征,从而得到具有相同属性的事物特征。2.分类分析。利用信息数据的特征,归纳总结相关信息数据的数据库,建立所需要的数据模型,从而来识别一些未知的信息数据。3.聚类分析。通过在确定的数据中,找寻信息的价值联系,得到相应的管理方案。4.序列分析。通过分析信息的前后因果关系,从而判断信息之间可能出现的联系。

  二、数据挖掘的重要性

  在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,这样就极大地提升了档案相关内容的安全性,降低档案的磨损率。并且可以对私密档案进行加密,进行授权查阅,进一步提高档案信息的安全性。其次,对档案进行鉴定与甄别,这也是档案工作中较困难的过程,过去做好这方面的工作主要依靠管理档案管理员自己的能力和水平,主观上的因素影响很大,但是数据挖掘技术可以及时对档案进行编码和收集,对档案进行数字化的管理和规划,解放人力资源,提升档案利用的服务水平。第三,数据挖掘技术可以减少档案的收集和保管成本,根据档案的特点和规律建立的数据模型能为之后的工作人员建立一种标准,提升了档案的鉴定效率。

  三、档案管理的数据挖掘运用

  (一)档案信息的收集。在实施档案管理工作时,首先需要对档案信息数据的收集。可以运用相关档案数据库的数据资料,进行科学的分析,制定科学的说明方案,对确定的数据集合类型和一些相关概念的模型进行科学说明,利用这些数据说明,建立准确的数据模型,并以此数据模型作为标准,为档案信息的快速分类以及整合奠定基础。例如,在体育局的相关网站上提供问卷,利用问卷来得到的所需要的信息数据,导入数据库中,让数据库模型中保有使用者的相关个人信息,通过对使用者的信息数据进行说明,从而判断使用者可能的类型,提升服务的准确性。因此,数据挖掘技术为档案信息的迅速有效收集,为档案分类以及后续工作的顺利展开,提供了有利条件,为个性化服务的实现提供了保证。(二)档案信息的分类。数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者上网使用网址时,数据挖掘技术可以充分利用使用者的搜索数据以及网站的访问记录,自动保存用户的搜索信息、搜索内容、下载次数、时间等,得到用户的偏好和特征,对用户可能存在的需求进行预测和分类,更加迅速和准确的,为用户提供个性化的服务。(三)档案信息的整合。数据挖掘技术可以对新旧档案的信息进行整合处理,可以较为简单地将“死档案”整合形成为“活档案”,提供良好的档案信息和有效的档案管理。例如,对于企事业单位而言,培训新员工的成本往往比聘请老员工的成本要高出很多。对老员工的档案信息情况进行全体整合,使档案资源充分发挥作用,将档案数据进行总结和规划,根据数据之间的联系确定老员工流失的原因,然后建立清晰、明白的数据库,这样可以防止人才流失,也能大大提高档案管理的效率。

  四、结语

  综上所述,在这个信息技术迅速跳跃发展的时代,将数据挖掘技术运用到档案管理工作中是时代发展的需求与必然结果。利用数据挖掘技术,可以使档案管理工作的效率大大提升,不仅减少了搜索档案信息的时间,节省人力物力,避免资源的浪费,还能帮助用户在海量的信息数据中,快速找到所需的档案数据信息。数据挖掘技术的运用,使静态的档案信息变成了可以“主动”为企事业单位的发展,提供有效的个性化服务的档案管家,推动了社会的快速发展。

  【参考文献】

  [1]栾立娟,卢健,刘佳,数据挖掘技术在档案管理系统中的应用[J].计算机光盘软件与应用,20xx:35-36.

  [2]宇然,数据挖掘技术研究以及在档案计算机管理系统中的应用[D].沈阳工业大学,20xx.

  [3]吴秀霞,关于档案管理方面的数据挖掘分析及应用探讨[J].经营管理者,20xx:338.

数据挖掘论文 篇四

  随着会计现代化的发展,会计越来越多的运用计算机技术的拓展。

  一、数据挖掘

  数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜存有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。

  二、数据挖掘的现代最新方法介绍

  常用的数据挖掘方法主要有决策树(Decision Tree)、遗传算法(Genetic Algorithms)、关联分析(Association Analysis).聚类分析(C~smr Analysis)、序列模式分析(Sequential Pattern)以及神经网络(Neural Networks)等。

  三、数据挖掘的实际应用

  由于数据挖掘市场还处于起步的阶段,但是发展很快。在国外有一些著名的大公司对数据挖掘系统进行了开发。

  1.Intelligent Miner这是IBM公司的数据挖掘产品,它提供了很多数据挖掘算法,包括关联、分类、回归、预测模型、偏离检测、序列模式分析和聚类。有2个特点:一是它的数据挖掘算法的可伸缩性;二是它与IBM/DB/2关系数据库系统紧密地结合在一起。

  2.EineSet是由SGI公司开发的,它也提供了多种数据挖掘方法,包括关联分析和分类以及高级统计和可视化工具。特色是它具有的强大的图形工具,包括规则可视化工具、树可视化工具、地图可视化工具和多维数据分散可视化工具,它们用于实现数据和数据挖掘结果的可视化。

  3.Clementine是由ISL公司开发的,它为终端用户和开发者提供提供了一个集成的数据挖掘开发环境。

  4.DBMiner是由DBMiner Technology公司开发的,它提供多种数据挖掘算法,包括发现驱动的OLAP分析、关联、分类和聚类。特色是它的基于数据立方体的联机分析挖掘,它包含多种有效的频繁模式挖掘功能和集成的可视化分类方法

  四、数据挖掘与管理会计

  1.提供有力的决策支持

  面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。

  2.赢得战略竞争优势的有力武器

  实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略的高度对企业的竞争环境、市场、顾客和供应商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。

  3.预防和控制财务风

  利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据SEC的报告,美国银行、美国第一银行、联邦住房贷款抵押公司等数家银行已采用了数据挖掘技术。

  五、数据挖掘在管理会计中的应用

  1.作业成本和价值链分析

  作业成本法以其对成本的精确计算和对资源的充分利用引起了人们的极大兴趣,但其复杂的操作使得很多管理者望而却步。利用数据挖掘中的回归分析、分类分析等方法能帮助管理会计师确定成本动因,更加准确计算成本。同时,也可以通过分析作业与价值之间的关系,确定增值作业和非增值作业,持续改进和优化企业价值链。在Thomas G,John J和Il-woon Kim的调查中,数据挖掘被用在作业成本管理中仅占3%。

  2.预测分析

  管理会计师在很多情况下需要对未来进行预测,而预测是建立在大量的历史数据和适当的模型基础上的。数据挖掘自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确的预测企业各项指标,作为决策的依据。例如对市场调查数据的分析可以帮助预测销售;根据历史资料建立销售预测模型等。

  3.投资决策分析

  投资决策分析本身就是一个非常复杂的过程,往往要借助一些工具和模型。数据挖掘技术提供了有效的工具。从公司的财务报告、宏观的经济环境以及行业基本状况等大量的数据资料中挖掘出与决策相关的实质性的信息,保证投资决策的正确性和有效性。如利用时间序列分析模型预测股票价格进行投资;用联机分析处理技术分析公司的信用等级,以预防投资风险等。

  4.产品和市场预测与分析

  品种优化是选择适当的产品组合以实现最大的利益的过程,这些利益可以是短期利润,也可以是长期市场占有率,还可以是构建长期客户群及其综合体。为了达到这些目标,管理会计师不仅仅需要价格和成本数据有时还需要知道替代品的情况,以及在某一市场段位上它们与原产品竞争的状况。另外企业也需要了解一个产品是如何刺激另一些产品的销量的等等。例如,非盈利性产品本身是没有利润可言的,但是,如果它带来了可观的客户流量,并刺激了高利润产品的销售,那么,这种产品就非常有利可图,就应该包括在产品清单中。这些信息可根据实际数据,通过关联分析等技术来得到。

  5.财务风险预测与评估

  管理会计师可以利用数据挖掘工具来评价企业的财务风险,建立企业财务危机预警模型,进行破产预测。破产预测或称财务危机预警模型能够帮助管理者及时了解企业的财务风险,提前采取风险防范措施,避免破产。另外,破产预测模型还能帮助分析破产原因,对企业管理者意义重大。,数据挖掘技术包括多维判别式分析、逻辑回归分析、遗传算法、神经网络以及决策树等方法在管理会计中得到了广泛的应用。

  六、结论

  数据挖掘是个崭新的领域,对于数字和信息的处理是非常科学和方便的,也是非常高效率和合理分析的非常好的工具,对于会计管理领域的应用在国际上只是刚刚开始,相信随着会计的国际化的接轨和计算机科学的进步,在我国的会计领域中的数据挖掘理论会得到不断的提升,在管理会计实际应用中的数据挖掘也越来越多样化和普及化。

数据挖掘论文 篇五

  [1]刘莹.基于数据挖掘的商品销售预测分析[J].科技通报.20xx(07)

  [2]姜晓娟,郭一娜.基于改进聚类的电信客户流失预测分析[J].太原理工大学学报.20xx(04)

  [3]李欣海.随机森林模型在分类与回归分析中的应用[J].应用昆虫学报.20xx(04)

  [4]朱志勇,徐长梅,刘志兵,胡晨刚.基于贝叶斯网络的客户流失分析研究[J].计算机工程与科学.20xx(03)

  [5]翟健宏,李伟,葛瑞海,杨茹.基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[J].电信科学.20xx(02)

  [6]王曼,施念,花琳琳,杨永利.成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[J].郑州大学学报(医学版).20xx(05)

  [7]黄杰晟,曹永锋.挖掘类改进决策树[J].现代计算机(专业版).20xx(01)

  [8]李净,张范,张智江.数据挖掘技术与电信客户分析[J].信息通信技术.20xx(05)

  [9]武晓岩,李康.基因表达数据判别分析的随机森林方法[J].中国卫生统计.20xx(06)

  [10]张璐.论信息与企业竞争力[J].现代情报.20xx(01)

  [11]杨毅超.基于Web数据挖掘的作物商务平台分析与研究[D].湖南农业大学20xx

  [12]徐进华.基于灰色系统理论的数据挖掘及其模型研究[D].北京交通大学20xx

  [13]俞驰.基于网络数据挖掘的客户获取系统研究[D].西安电子科技大学20xx

  [14]冯军.数据挖掘在自动外呼系统中的应用[D].北京邮电大学20xx

  [15]于宝华.基于数据挖掘的高考数据分析[D].天津大学20xx

  [16]王仁彦.数据挖掘与网站运营管理[D].华东师范大学20xx

  [17]彭智军.数据挖掘的若干新方法及其在我国证券市场中应用[D].重庆大学20xx

  [18]涂继亮.基于数据挖掘的智能客户关系管理系统研究[D].哈尔滨理工大学20xx

  [19]贾治国.数据挖掘在高考填报志愿上的应用[D].内蒙古大学20xx

  [20]马飞.基于数据挖掘的航运市场预测系统设计及研究[D].大连海事大学20xx

  [21]周霞.基于云计算的太阳风大数据挖掘分类算法的研究[D].成都理工大学20xx

  [22]阮伟玲.面向生鲜农产品溯源的基层数据库建设[D].成都理工大学20xx

  [23]明慧.复合材料加工工艺数据库构建及数据集成[D].大连理工大学20xx

  [24]陈鹏程.齿轮数控加工工艺数据库开发与数据挖掘研究[D].合肥工业大学20xx

  [25]岳雪.基于海量数据挖掘关联测度工具的设计[D].西安财经学院20xx

  [26]丁翔飞.基于组合变量与重叠区域的SVM-RFE方法研究[D].大连理工大学20xx

  [27]刘士佳.基于MapReduce框架的频繁项集挖掘算法研究[D].哈尔滨理工大学20xx

  [28]张晓东.全序模块模式下范式分解问题研究[D].哈尔滨理工大学20xx

  [29]尚丹丹.基于虚拟机的Hadoop分布式聚类挖掘方法研究与应用[D].哈尔滨理工大学20xx

  [30]王化楠.一种新的混合遗传的基因聚类方法[D].大连理工大学20xx

  [31]杨毅超.基于Web数据挖掘的作物商务平台分析与研究[D].湖南农业大学20xx

  [32]徐进华.基于灰色系统理论的数据挖掘及其模型研究[D].北京交通大学20xx

  [33]俞驰.基于网络数据挖掘的客户获取系统研究[D].西安电子科技大学20xx

  [34]冯军.数据挖掘在自动外呼系统中的应用[D].北京邮电大学20xx

  [35]于宝华.基于数据挖掘的高考数据分析[D].天津大学20xx

  [36]王仁彦.数据挖掘与网站运营管理[D].华东师范大学20xx

  [37]彭智军.数据挖掘的若干新方法及其在我国证券市场中应用[D].重庆大学20xx

  [38]涂继亮.基于数据挖掘的智能客户关系管理系统研究[D].哈尔滨理工大学20xx

  [39]贾治国.数据挖掘在高考填报志愿上的应用[D].内蒙古大学20xx

  [ 40]马飞.基于数据挖掘的航运市场预测系统设计及研究[D].大连海事大学20xx

数据挖掘论文 篇六

  1.软件工程数据的挖掘测试技术

  1.1代码编写

  通过对软件数据进行分类整理,在进行缺陷软件的排除工作以后,根据软件开发过程中的各种信息进行全新的代码编写。基于代码编写人员的编写经验,在一般情况,对结构功能与任务类似的模块进行重新编写,这些重新编写的模块应遵循特定的编写规则,这样才能保证代码编写的合理有效性。

  1.2错误重现

  代码编写完成以后开发者会将这些代码进行版本的确认,然后将正确有效的代码实际应用到适当版本的软件中去。而对于存在缺陷的代码,开发者需要针对代码产生缺陷的原因进行分析,通过不但调整代码内的输入数据,直到代码内的数据与程序报告中的描述接近为止。存在缺陷的代码往往会以缺陷报告的形式对开发者予以说明,由于缺陷报告的模糊性,常常会误导开发者,进而造成程序设计混乱。

  1.3理解行为

  软件开发者在设计软件的过程中需要明确自己设计软件中每一个代码的内容,同时还需要理解其他开发者编写的代码,这样才能有效地完善软件开发者的编写技术。同时,软件开发者在进行代码编写的过程中,需要对程序行为进行准确的理解,以此保证软件内文档和注释的准确性。

  1.4设计推究

  开发者在准备对软件进行完善设计的过程中,首先需要彻底了解软件的总体设计,对软件内部复杂的系统机构进行详细研究与分析,充分把握软件细节,这有这样才能真正实现软件设计的合理性与准确性。

  2.软件工程数据挖掘测试的有效措施

  2.1进行软件工程理念和方法上的创新

  应通过实施需求分析,将数据挖据逐渐演变成形式化、规范化的需求工程,在软件开发理念上,加强对数据挖掘的重视,对软件工程的架构进行演化性设计与创新,利用新技术,在软件开发的过程中添加敏捷变成与间件技术,由此,提高软件编写水平。

  2.2利用人工智能

  随着我国科学技术的不断发展与创新,机器学习已经逐渐被我国各个领域所广泛应用,在进行软件工程数据挖掘技术创新的过程中,可以将机器学习及数据挖掘技术实际应用于软件工程中,以此为我国软件研发提供更多的便捷。人工智能作为我国先进生产力的重要表现,在实际应用于软件工程数据的挖掘工作时,应该利用机器较强的学习能力与运算能力,将数据统计及数据运算通过一些较为成熟的方法进行解决。在软件工程数据挖掘的工作中,合理化的将人工智能实际应用于数据挖掘,以此为数据挖掘提供更多的开发测试技术。

  2.3针对数据挖掘结果进行评价

  通过分析我国传统的软件工程数据挖掘测试工作,在很多情况下,传统的数据挖掘测试技术无法做到对发掘数据的全面评价与实际应用研究,这一问题致使相应的软件数据在被发掘出来以后无法得到有效地利用,进而导致我国软件开发工作受到严重的抑制影响。针对这一问题,数据开发者应该利用挖掘缺陷检验报告,针对缺陷检验的结果,制定相应的挖掘结构报告。同时,需要结合软件用户的体验评价,对挖掘出的数据进行系统化的整理与分析,建立一整套严谨、客观的服务体系,运用CodeCity软件,让用户在的体验过后可以对软件进行评价。考虑到软件的服务对象是人,因此,在软件开发的过程中要将心理学与管理学应用于数据挖掘,建立数据挖掘系统和数据挖掘评价系统。

  3.结束语

  综上所述,由于软件工程数据挖掘测试技术广阔的应用前景,我国相关部门已经加大了对软件技术的投资与开发力度,当下,国内已经实现了软件工程的数据挖掘、人工智能、模式识别等多种领域上的发展。

相关文章

京杭大运河杭州段水体中微生物生理群生态分布研究【实用3篇】

通过采样分析,于2004年对京杭大运河杭州段水体中可培养微生物生理群的生态分布进行了为期1年的调查.结果表明,水体中总异养细菌年平均值高达1.64×105 CFU·mL-1,粪大肠菌平均达1.16×1...
论文2015-01-01
京杭大运河杭州段水体中微生物生理群生态分布研究【实用3篇】

智能化数字社区的应用和特点论文

【摘 要】 智能化数字社区以信息网络子系统为基础,有机集成了安全防范子系统及信息管理子系统。并且通过智网小区综合管理平台统一操作,统一管理,从而实现真正意义上的智能管理,智能生活。 【关键词】 智能化...
论文2011-03-04
智能化数字社区的应用和特点论文

逆反心理的实质论文【优秀3篇】

论文摘要:逆反心理是指受教育者在接受教育的过程中产生和表现出来的对教育内容或教育者的抵制和对立,是青少年成长中普遍存在的现象。本文拟从认知、情感和行为意向三个角度对逆反心理的实质进行阐释。 论文关键词...
论文2018-03-02
逆反心理的实质论文【优秀3篇】

康德伦理学中的道德法则【精选3篇】

康德伦理学思想中的普遍的道德法则,对人的意志来说,是一种...
论文2018-02-02
康德伦理学中的道德法则【精选3篇】

[高中物理]重视物理课本中章节导语的教学(推荐3篇)

如果把物理课本中各章节的知识点比作闪光的珍珠,那么,章节导语就是串起这些珍珠的精线。高中物理必修本和选修本均明显地加强了这方面内容,这些精心撰写的导语,对学生来说如同指点迷津的钥匙。在中学物理教学中重...
论文2019-04-09
[高中物理]重视物理课本中章节导语的教学(推荐3篇)

景观项目论文范文【精简6篇】

景观项目论文范文 第一篇1. 前言近十年来,我国的经济迅速发展,同时城市不断扩张,导致与我们紧密相关的生活环境品质日益下降。尤其在中心城区,更是拥挤不堪,很少可以见到开敞空间,城市公共绿地则少之又少。...
论文2011-04-04
景观项目论文范文【精简6篇】