圆的标准方程教学设计与思考论文【优质3篇】

圆的标准方程教学设计与思考论文 篇一

第一篇内容

引言:

圆是几何学中的基本图形之一,它在生活和工作中都有广泛的应用。掌握圆的标准方程是学习圆的重要一步,因为它可以将圆的几何特性和代数性质联系起来。本文将介绍一个针对高中数学课堂的圆的标准方程教学设计,并探讨其中的思考。

一、教学目标:

1. 理解圆的基本概念和性质;

2. 掌握圆的标准方程的推导过程;

3. 能够根据给定条件写出圆的标准方程;

4. 运用圆的标准方程解决实际问题。

二、教学内容与步骤:

1. 复习圆的基本概念和性质:直径、半径、圆心、切线等;

2. 引入圆的标准方程的概念,解释其重要性和应用场景;

3. 推导圆的标准方程的过程,通过几何和代数的方法进行说明;

4. 演示如何根据给定条件写出圆的标准方程,并进行一些实例分析;

5. 引导学生进行练习,巩固掌握圆的标准方程的运用能力;

6. 提供一些实际问题,让学生运用圆的标准方程进行解决。

三、教学方法与手段:

1. 讲授与演示相结合的方式,通过图示和代数推导来解释圆的标准方程;

2. 创设情境,引导学生主动思考和分析问题;

3. 鼓励学生互动,提出问题和解答问题;

4. 利用计算机软件或数学工具辅助教学。

四、教学评价:

1. 学生课堂表现:参与讨论、提问与回答问题的积极性;

2. 学生作业表现:完成作业的准确性和独立性;

3. 学生考试成绩:对圆的标准方程的理解和应用。

结论:

通过本教学设计,学生可以从几何和代数的角度全面理解圆的标准方程,掌握其推导过程和应用方法。这将有助于提高学生的数学思维能力和问题解决能力,为他们在高中数学学习中打下坚实的基础。

圆的标准方程教学设计与思考论文 篇二

第二篇内容

引言:

圆是几何学中的重要概念之一,学习圆的标准方程对于学生的数学学习和应用能力的提高具有重要意义。本文将探讨圆的标准方程教学设计中可能遇到的问题和思考。

一、教学设计中可能遇到的问题:

1. 学生对圆的基本概念和性质理解不深:由于圆的基本概念和性质是学习圆的标准方程的前提知识,如果学生对此不理解或理解不深,可能会影响后续学习;

2. 推导圆的标准方程过程复杂:圆的标准方程的推导过程需要一定的代数技巧和几何思维,对于某些学生来说可能会比较困难;

3. 实际问题的运用:学生在解决实际问题时,可能会存在将问题转化为代数方程的困难。

二、解决问题的思考:

1. 强化基础知识的学习:在教学设计中,可以加入复习和巩固圆的基本概念和性质的环节,通过练习和讨论,帮助学生加深对这些知识的理解;

2. 分步教学:在推导圆的标准方程时,可以将过程分解为几个关键步骤,逐步引导学生理解和掌握每个步骤的思路和方法;

3. 多样化的教学手段:利用计算机软件、数学工具或实物模型等多样化的教学手段,帮助学生直观地理解圆的标准方程的概念和应用;

4. 引导学生思考:在解决实际问题时,可以通过提问和引导,帮助学生将问题转化为代数方程,并引导他们思考问题的解决思路和方法。

结论:

在圆的标准方程教学设计中,我们需要关注学生的基础知识掌握和思维能力的培养。通过针对性的教学方法和多样化的教学手段,可以帮助学生更好地理解和掌握圆的标准方程,提高他们的数学学习和应用能力。同时,我们也需要关注学生的思维过程和问题解决能力的培养,引导他们主动思考和分析问题,从而更好地应对实际问题的解决。

圆的标准方程教学设计与思考论文 篇三

圆的标准方程教学设计与思考论文

  [ ] 在“圆的标准方程”的教学中,基于对教学内容、教学方法的分析,从教学情境创设、标准方程构建、变式训练与实际问题的解决等角度,进行了详细的教学设计与实施。 基于本内容的教学进行反思,发现对教学内容的定位,在学生实际与评价要求之间寻找平衡点,以及培养学生的数学意识,都是高中数学教学中需要重点关注的事项。

  [关键词 “圆的标准方程”是人教版高中数学(必修)教材第二册的内容。 作为数学中的经典内容,学生在此前的数学学习中积累了大量的关于圆的经验与知识。 到了高中阶段,从方程的角度来描述圆,对学生的思维方式提出了新的挑战,从而本内容的教学也就成为高中数学教学中具有一定标杆意义的事件。 在日常教学中,笔者对本课的教学进行了深入的思考,现结合本课的教学设计,谈谈笔者对本课教学的研究与感受。

  [教学内容分析

  圆的标准方程在解析几何内容中具有重要的基础作用,同时具有承上启下的地位。 从知识构建的角度来看,圆的标准方程是其他图形方程学习的基础,也是二次曲线学习的起始知识,直线与圆的关系、圆锥曲线等知识,均需在此基础上进行构建。 从学生学习的角度来看,由于圆是学生研究最多的基本图形之一,因此学生对圆有着丰富的感性认识,也有着丰富的数学知识作为支撑,也因此对其标准方程的学习,可以打开学生学习其他曲线方程的思路,可以为后面知识的学习形成一种较高思维水平的定式作用(思维定式并不总是消极的,很多时候学生的学习之所以没有障碍,正是一定水平上的思维定式作用的结果)。 从这个角度讲,圆的标准方程这一节课的教学,需要花大气力进行基础作用的奠基。 但是需要看到的是,解析几何中对圆的研究,毕竟不同于学生此前的学习方式,尤其是通过方程来描述像圆这样的曲线,学生在思维方式上就有困难,这种困难往往会影响学生构建对圆的标准方程认识时的学习心理,因此在教学设计中需要重视这一因素。 从问题解决(数学知识应用)的角度来看,本课需要结合高考

  要求,在让学生运用圆的标准方程解决数学问题及实际问题的过程中,形成一种良好的直觉,即对于一些基本的与之相关的问题,要能够在第一时间反映出其与圆的标准方程有关,需以之为工具实现问题的求解。 如上面所分析的一样,这种基础性的知识,只有成为良好的直觉,才能成为有效的解题工具。

  结合基本的教学经验,在教学目标的确定上,笔者以为本课的内容可以在协调好三维目标的基础上具体制定这样的教学目标:

  ①掌握圆的标准方程,并能够根据圆的标准方程反映出圆心坐标与半径;

  ②在圆的标准方程建立的过程中形成数形结合思想,深刻体验用代数方法解决几何问题的过程;

  ③在用圆的标准方程描述圆的过程中体验数学的简洁美与对应美。 关于这样的目标界定,笔者重点解释一下第三个目标:从传统的角度看,情感态度价值观这一目标往往容易虚化,在实际教学中不容易得到真正的关注。 在笔者看来,就圆的标准方程这一教学而言,更实在的是让学生在对圆的图形的认识中发现其是最简洁的基本图形之一,而描述其的标

准方程亦具有对称、简洁的特征,认识到这两点即可,不需要追求过多、过空的所谓情感态度。

  [教学方法分析

  教学有法,教无定法,贵在得法!对于圆的标准方程这一内容而言,采用什幺样的教学方法,是教学中需要高度重视的问题。 结合笔者此前的教学经验,同时注意学生主体作用的发挥,笔者在此内容的教学中确定这样的两个教学方法:一是问题驱动(其中包括数学探究等环节),促进学生的数学建模;二是通过任务驱动的方法,促进学生应用圆的标准方程的知识解决问题。

  对于这两个教学方法的确定,笔者的思考是这样的:一方面,本知识的基础性作用,决定了其在学生的考试评价中需要发挥重要作用,因此首先必须考虑到考试的需要,因而用问题驱动可以让学生不断地突破最近发展区,从而形成一种较好的数学思维方式与学习习惯。 教学经验表明,很多学生在数学学习中之所以感觉困难,就是因为没有一种良好的数学意识与思维习惯,而像圆的标准方程这样的基础性知识,必须成为培养学生数学意识与思维习惯的良好载体。 另一方面,任务驱动可以在问题驱动的基础上更好地发挥学生的内驱力,从而让圆的标准方程的运用能够真正成为学生的良好直觉,而这一思路其实也呼应了第一点对教学目标的阐述。

  需要注意的是,教学方法的确定原则上只是宏观角度对学生学习过程预设基础上的,对教学行为判断的产物。 在具体的教学过程中还需要根据细节进行适当地调整,如果将教学方法(包括教学过程)模式化,那这样的教学方法确定是没有意义的。

  [教学过程阐述

  在圆的标准方法的教学设计中,笔者确定了这样的三个步骤,现结合教学过程具体说明:

  第一步,创设情境,激活思维。 圆的标准方程在生活中的应用看起来并不那幺直接,因此情境的创设需要一定程度的思考。 笔者所选择的是汽车过隧道的例子,将隧道的截面抽象成一个半圆,给出其半径,然后提出问题:已知某车的宽度与高度,其能否进入这个隧道?这是一个被多人选用过的情境,其好就好在能够将圆的标准方程巧妙地蕴含其中,同时学生又可以在原有数学知识的基础上解决这个问题。

  第二步,问题驱动,展开探究。 在上述问题的驱动之下,引导学生的思维对情境进行加工,并寻找问题解决的思路。 在教学过程中,笔者发现学生起初的'思路是原有知识体系的产物,比如说有学生试图通过勾股定理,去算出汽车对角线的距离并与圆的半径进行对比。 这是一种思路,也能够体现学生的已有能力水平,从最近发展区的观点来看,教学中教师要做的就是从这个水平出发,让学生的思维向圆的标准方程发展。 于是,数学探究的过程也就展开了。 此时,教师可以抛出一个问题:能否以坐标为工具,来解决这个问题?在问题驱动下的探究过程中,学生的学习思路大致相同,他们首先要在坐标上建立起隧道与汽车两个对象(当然这是数学抽象的产物),然后将相关的数据记录其中,于是隧道被抽象为圆心在原点、具有一定半径的半圆,而汽车被抽象为一个已知长和宽的矩形。 于是实际问题也就成为一个纯粹的数学问题,最终学生要比较的也就是直角坐标上圆的半径与矩形对角线的长度的关系,而其中的难点又是圆的半径的确定。 于是学生的研究重点就转移到了坐标系的圆上来,这个时候教师进一步提出问题:如何在直角坐标系上描述一个圆呢?有此问题驱动,其后建立圆的标准方程与传统教学就接轨了,考虑到同行们相对熟稔,此不赘述。

  第三步,变式训练,任务驱动。 这一步有两个任务,一是向学生提出问题,如果圆心不在原点处,那圆的标准方程如何建立?二是呼应此前的实际问题,并给出新的实际问题,以让学生具有一个运用圆的标准方程去解决不同难度实际问题的机会,从而形成良好的解题直觉。

  在上述三个步骤中,关键在于学生思路的打开,也就是教学情境的创设与其的引导。 多年的教学经验让笔者意识到,很多时候学生感觉数学学习困难,并不完全是因为数学知识本身所谓的“难”上,而是学生入不了“境”,因而也就找不到“门”。 因此,创设情境非常重要,打开学生的思路亦很重要,有此两个环节作为基础,学生的思路一旦打开,后面的数学概念建构有时反而比较简单,本节课的教学就是如此。

  [教学及其反思

  反思本课的教学,尤其是将此次教学的整体过程与此前进行比较时,还是有所发现:

  其一,数学内容的定位问题。 圆的标准方程在曲线方程中起着什幺样的作用?这样的问题此前没有仔细思考过,而一旦思考之后,就发现其在知识构建、能力形成乃至于数学意识与学习习惯形成方面都具有重要的作用,这种作用要想真正发挥出来,只能依靠好的教学设计。

  其二,教学设计要在学生的基础与考试要求之间做好平衡,过于偏向前者,则满足不了考试要求;过于偏向后者,则学生的学习过程就是空中楼阁。 寻找这个平衡点,往往成为评价教师教学能力的关键,同时也是教师自身专业成长的着力点。

  其三,数学意识是数学教学的重要方向。 笔者在圆的标准方程的教学中,注意比较过数学成绩好与差学生的表现,结果发现数学学得好的学生,他们往往有一个极好的直觉,能够迅速地判断出数学学习的下一步方向,而学困生就缺乏这样的意识。 有此观察之后,笔者还注意研究过数学进步较快的学生的学习特点,发现他们的数学意识也挺好,这就使笔者确信数学意识的培养很重要。

相关文章

加强环境保护促进生态文明【精彩3篇】

阐明了生态文明的含义与特点,分析了生态文明与可持续发展和环境保护的关系,针对当前生态文明建设中存在的问题,提出了切实加强环境保护、促进生态文明的对策.作 者: 王哲 王宝泉 WANG Zhe...
论文2017-07-03
加强环境保护促进生态文明【精彩3篇】

教育教学论文(最新3篇)

教育教学论文...
论文2019-05-03
教育教学论文(最新3篇)

网络新技术论文【精彩3篇】

导语:网络是由节点和连线构成,表示诸多对象及其相互联系。以下是小编为你介绍的网络新技术论文,欢迎参考。 网络新技术论文 摘要:无线局域网利用利用了无线多址信道的一种有效方法来支持计算机之间的通信,并为...
论文2014-08-02
网络新技术论文【精彩3篇】

论现代市场营销的本质市场营销论文(优秀3篇)

市场营销的理论和实践在某种程度上受市场营销本质的影响和制约。探索现代市场营销的本质不但是研究现代市场营销理论的核心,而且是企业市场营销活动的行动指南。然而,中外市场营销学者对市场营销本质一直未给予明确...
论文2017-01-04
论现代市场营销的本质市场营销论文(优秀3篇)

国外舞蹈美育论文范文7篇【精选3篇】

国外舞蹈美育论文范文 第一篇艺术符号是一種艺术形式,就意味着它是一种抽象,是呈现给感知直觉的一种特殊的形式.它“以幻想或类似幻想为媒介的范型化使事物的形式(不仅指形状,而且指逻辑形式,例如事件中不同价...
论文2018-06-06
国外舞蹈美育论文范文7篇【精选3篇】

浅谈室内环境污染【优质3篇】

随着人们生活水平的提高,人们对于生存环境,尤其是室内生产环境和生活环境的要求也不断提高.室内环境污染已成为当前日益突出的问题,针对室内环境污染物的来源及其对人体的危害,提出了解决源头问题的对策以及要增...
论文2014-04-07
浅谈室内环境污染【优质3篇】