《数学之美》读书笔记(最新6篇)
《数学之美》读书笔记 篇一
《数学之美》是一本由吴军所著的科普读物,以通俗的语言阐述了数学在现实生活中的应用和美妙之处。我读完这本书后,深感数学的智慧和力量,下面我将分享我在阅读过程中的一些感悟和学习。
首先,在《数学之美》中,吴军用生动的例子和实际问题,展示了数学在各个领域中的应用。他通过介绍搜索引擎、推荐系统、数据挖掘等技术,向读者展示了数学在计算机科学中的重要性。我深受启发的一个例子是PageRank算法的介绍。通过这个例子,我了解到数学如何帮助搜索引擎更好地为用户提供准确的搜索结果。这让我对数学的应用能力有了更深刻的认识。
其次,在《数学之美》中,吴军强调了数学的思维方式和解决问题的能力。他讲述了许多数学家们如何运用数学思维解决实际问题的故事,让我深刻体会到数学思维的重要性。数学的思维方式注重逻辑和推理,能够帮助我们更好地分析和解决问题。在读书的过程中,我学到了如何将数学思维运用到自己的学习和工作中,这让我在解决问题时变得更加有条理和高效。
此外,《数学之美》还给我带来了对数学美学的新认识。吴军通过介绍数学中的对称、比例等概念,向读者展示了数学中的美妙之处。他还讲述了数学家们对于美学的追求和创造,让我对数学的美感有了更深刻的理解。通过阅读这本书,我开始意识到数学不仅仅是一门解题的工具,更是一门可以带来美感和享受的学科。
综上所述,《数学之美》让我对数学有了全新的认识和理解。通过阅读这本书,我不仅学到了数学在各个领域中的应用,还学到了数学思维和解决问题的能力。同时,我也深深感受到了数学的美妙和魅力。我相信,这本书对于那些对数学感兴趣的读者来说,会是一本启发和指引的好书。
《数学之美》读书笔记 篇二
《数学之美》是一本让我深受启发和思考的科普读物。这本书不仅向读者展示了数学在现实生活中的应用,还帮助读者理解了数学的思维方式和美学。在阅读的过程中,我收获了很多宝贵的经验和知识。
首先,《数学之美》向读者展示了数学在科学和工程领域中的应用。通过介绍搜索引擎、推荐系统、数据挖掘等技术,吴军向读者展示了数学在计算机科学和信息技术中的重要性。这让我深感数学的实用性和智慧。通过学习数学的原理和方法,我们能够更好地解决实际问题,提高工作效率和质量。这对于我来说是一个很重要的启示。
其次,《数学之美》让我对数学的思维方式有了更深入的理解。数学思维注重逻辑和推理,能够帮助我们更好地分析和解决问题。吴军在书中通过讲述数学家们的故事,向读者展示了数学思维的重要性。通过学习数学的思维方式,我们可以培养自己的逻辑思维能力,提高问题解决的效率和准确性。这对于我来说是一个很重要的提醒和指导。
此外,《数学之美》还让我对数学的美学有了新的认识。吴军通过介绍数学中的对称、比例等概念,向读者展示了数学中的美妙之处。他讲述了数学家们对于美学的追求和创造,让我对数学的美感有了更深刻的理解。通过阅读这本书,我开始意识到数学不仅仅是一门解题的工具,更是一门可以带来美感和享受的学科。这让我对数学产生了更大的兴趣和热爱。
综上所述,《数学之美》是一本让我受益匪浅的读物。通过阅读这本书,我不仅学到了数学在科学和工程领域中的应用,还学到了数学思维和解决问题的能力。同时,我也对数学的美感有了更深刻的认识。我相信,这本书对于那些对数学感兴趣的读者来说,会是一本富有启发和意义的好书。
《数学之美》读书笔记 篇三
《数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。
在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。
在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。
最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。
因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。
写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。
废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好,所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。
吴军是清华大学毕业的,之前任职于Google,后来到了腾讯,这些文章都是发表在Google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非IT领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。
除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。
总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。
《数学之美》读书笔记 篇四
很多人都觉得,数学是一个太高深、太理论的学科,不接近生活,对我们大多数人来说平时也根本用不到,所以没必要去理解数学。但事情真的是这样吗?
其实不然,数学一直渗透在我们生活的各个方面,尤其是在今天这个信息时代,很多简单朴素的数学思想,能发挥一般人很难想象的巨大作用。比如,计算机处理自然语言,用到的最重要工具是统计学的思想;计算机对新闻内容的分类,依靠的是数学里的余弦定理;而电子电路的基本逻辑,则来源于仅有0和1两个数字的布尔代数。
在《数学之美》里,吴军用自己在工作中使用数学的亲身经历,为我们展现了数学的重要性,以及他对数学之美的理解。吴军是“得到”App专栏《吴军的谷歌方法论》的主理人。曾先后供职于谷歌和腾讯,是著名的自然语言处理专家和搜索专家。同时,他还是位畅销书作家,除了这本《数学之美》以外,还写过《文明之光》《智能时代》《浪潮之巅》等多本畅销书。
《数学之美》读书笔记 篇五
最近看了这本《数学之美》,不得不感叹一句,可惜早已身不在起点。
我读书的时候,数学成绩一直都很好,虽然离开学校已经10多年,自觉当初的知识还是记得很多,6~7年前再考线性代数和概率论,还是得到了很高的分数。不过我也和大部分人一样,觉得数学没有太多用处,特别是高中和大学里面学的,那些三角函数,向量,大数定律,解析几何,除了在考试的题目里面用一下,平时又有什么地方可以用呢?
看了《数学之美》,惊叹于数学的浩瀚和简单,说它浩瀚,是因为它的分支涵盖了科学的方方面面,是所有科学的理论基础,说它简单,无论多复杂的问题,最后总结的数学公式都简单到只有区区几个符号和字母。
这本书介绍数学理论在互联网上的运用,平时我们在使用互联网搜索或者翻译功能的时候,时常会感叹电脑对自己的了解和它的聪明,其实背后的原理就是一个个精美的算法和大量数据的训练。那些或者熟悉或者陌生的数学知识(联合概率分布,维特比算法,期望最大化,贝叶斯网络,隐形马尔可夫链,余弦定律,etc),一步步构建了我们现在所赖以生存的网上世界。
之所以觉得自己早已身不在起点,是因为上面这些数学知识,早已经不在我的知识框架之内,就算曾经学过,也不过是囫囵吞枣一样的强记硬背,没有领会过其中的真正意义。而今天想重头在来学一次,其实已经不可能了。且不说要花费多少的精力和时间,还需要的是领悟力。而这一些,已经不是我可以简单付出的。
不像物理、化学需要复杂的实验来验证,很多数学的证明,几乎只要有一颗聪明的头脑和无数的草稿纸,可是光是这颗聪明的头脑,就可以阻拦掉很多人。有人说多读书就会聪明,我不否认,书本的确会提供很多知识,可是不同的人读同一本书也会有不同的收货,这就限制于每个人的知识框架和认知水平。就如一个数学功底好过我的人,看这本书,就会更容易理解里面的公式和推导出这些公式的其他运用点,而我,只能站在数学的门口,感叹一句,它真的好美吧。
当然,我暂时无法在实际生活中运用这些数学公式,可是书中提到的一些方法论,还是很有帮助的
1)一个产业的颠覆或者创新,大部分来自于外部的力量,比如用统计学原理做自然语言处理。
2)基础知识和基础数据是很重要性,只有足够多和足够广的数据,才可以提供有效的分析,和验证分析方法的好坏。
3)先帮用户解决80%的问题,在慢慢解决剩下的20%的问题;
4)不要等一个东西完美了,才发布;
5)简单是美,坚持选择简单的做法,这样会容易解释每一个步骤和方法背后的道理,也便于查错。
6)正确的模型也可能受噪音干扰,而显得不准确;这时不应该用一种凑合的修正方法加以弥补,而是要找到噪音的根源,从根本上修正它。
7)一个人想要在自己的领域做到世界一流,他的周围必须有非常多的一流人物。
《数学之美》读书笔记 篇六
在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。
那么,对我而言,到底提升了什么境界呢?
首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。
计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。
我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!
吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50—70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。
在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。
观国内的学说界,官风盛行、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。
看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。