三角形的角平分线【实用3篇】

三角形的角平分线 篇一

在几何学中,三角形的角平分线是指从一个角的顶点出发,将这个角分成两个相等的角的线段。这样的线段被称为角平分线,它可以帮助我们研究三角形中的一些性质和定理。

首先,我们来看一个基本的性质:在一个三角形中,三条角平分线的交点会形成一个点,这个点被称为三角形的内心。内心是三角形内部到三条边的距离和最小的点,也是三条角平分线的交点。内心在三角形中有着重要的作用,比如可以帮助我们证明一些三角形的性质和定理。

其次,角平分线还可以帮助我们证明三角形的一些相似性质。比如,如果在一个三角形中,一个角的角平分线和对边相交,那么这个角平分线将这个三角形分成两个相似三角形。利用这个性质,我们可以推导出三角形中的一些相似定理,进一步帮助我们解决几何题目。

另外,角平分线还可以帮助我们证明三角形的一些重要定理,比如角平分线定理。这个定理指出:在一个三角形中,如果一条角平分线将一个角分成两个相等的角,那么这条角平分线所在的直线平行于另一边。这个定理在解决一些几何题目中经常被用到,是我们学习三角形性质的重要定理之一。

总的来说,三角形的角平分线是我们在研究三角形性质和定理时经常用到的重要概念。通过研究角平分线,我们可以更深入地理解三角形的性质,进而解决更加复杂的几何问题。因此,对于几何学的学习来说,角平分线是一个不可或缺的重要内容。

三角形的角平分线 篇二

在几何学中,三角形的角平分线是一条非常重要的概念,它可以帮助我们研究三角形的性质和定理。角平分线不仅可以帮助我们证明三角形的一些基本性质,还可以在解决几何题目时提供一些重要的线索。

首先,角平分线可以帮助我们证明三角形的内角平分线定理。这个定理指出:在一个三角形中,如果一条角平分线将一个角分成两个相等的角,那么这个角平分线所在的直线平分对边。这个定理在我们解决有关三角形内角平分线的问题时经常被用到,是我们学习三角形性质的基础之一。

其次,角平分线还可以帮助我们证明三角形的外角平分线定理。这个定理指出:在一个三角形中,如果一条角平分线将一个角分成两个相等的角,那么这个角平分线所在的直线与对边的延长线相交于一个点,这个点被称为三角形的外心。外心是三角形外部到三条边的距离和最大的点,也是三角形的外心角平分线的交点。

另外,角平分线还可以帮助我们证明三角形的一些重要性质,比如角平分线定理的逆定理。这个定理指出:在一个三角形中,如果一条角平分线平分了一个角,那么这个角所对的两个边的比值等于这条角平分线所对应的两个边的比值。这个逆定理在我们解决一些三角形中的比较题目时非常有用,可以帮助我们简化解题过程。

综上所述,三角形的角平分线是我们在学习几何学时不可或缺的重要内容,它可以帮助我们理解三角形的性质和定理,进而解决更加复杂的几何问题。通过研究角平分线,我们可以更深入地了解三角形的结构和性质,提高我们的几何学习能力。因此,对于几何学的学习来说,角平分线是一个不可或缺的重要概念。

三角形的角平分线 篇三

三角形的角平分线

  教学目标:

  1、理解三角形的内外角平分线定理;

  2、会证明三角形的内外角平分线定理;

  3、通过对定理的证明,学习几何证明方法和作辅助线的方法;

  4、培养逻辑思维能力。

  教学重点:

  1、几何证明中的证法分析;

  2、添加辅助线的方法。

  教学难点:

  如何添加有用的辅助线。

  教学关键:

  抓住相似三角形的判定和性质进行教学。

  教学方法:

  “四段式”教学法,即读、议、讲、练。

  一、阅读课本,注意问题

  1、复习旧知识,回答下列问题

  ①在等腰三角形中,怎样从等边得出等角?又怎样从等角得出等边?请画图说明。

  ②辅助线的作法中,除了过两个点连接一条线段外,最常见的就是过某个已知点作某条已知直线的平行线。平行线有哪些性质?

  ③怎样判断两个三角形是相似的?相似三角形最基本的性质是什么?

  ④几何证明中怎样构造有用的相似三角形?

  2、阅读课本,弄清楚教材的内容,并注意教材上是怎样讲的。

  提示:课本上在这一节讲了三角形的内外角平分线定理,每个定理各讲了一种证明方法。为了叙述定理的需要,课本上还讲了线段的内分点和外分点两个概念。最后用一个例题来说明怎样运用三角形的内外角平分线定理。阅读时要注意课本上有关问题的叙述、分析以及作辅助线的方法。通过适当的联想和猜测,找出一些课本上尚未出现的新的证明方法。

  3、注意下列问题:

  ⑴如图,等腰中,顶角的平分线交底边于,那么,图中出现的相等线段是xxx即xxx。通过比较得到。

  ⑵如果上面问题中的换成任意三角形,即右图的,平分,交于,那么,是不是还成立?请同学们用刻度尺量一量线段的长度,计算,然后再比较(小的误差忽略不计)。

  ⑶三角形的内角平分线定理说的是什么意思?课本上是怎样写已知、求证的?

  ⑷课本上是怎样进行分析、证明的?都用了哪些学过的知识?证明的根据是什么?

  ⑸课本上证明的过程中是怎样作辅助线的?这样作辅助线的目的是什么?

  ⑹过、、三点能不能作出有用的辅助线?如果能,辅助线应该怎样作?各能作出几条?

  ⑺就作出的辅助线,怎样寻找证明的思路和方法?分析的过程中用到了哪些知识?

  ⑻你能不能类似地叙述三角形的外角平分线定理?

  ⑼回答练习中的第一题。

  ⑽总结证明方法和作辅助线的方法。

  ⑾注意内分点和外分点两个概念及其应用。

  4、阅读指导丛书《平面几何》第二册。

  ⑴注意辅助线中平行线的作法,通过对图、、的观察分析,找出解决问题的证明方法。

  ⑵丛书利用正弦定理中的面积公式来证明三角形的内角平分线定理,既把有关的知识联系起来、拓展了解题思路,又为我们提供了一种比较简单的解决问题的方法,值得我们借鉴。要注意三角形面积的几种不同的计算方法。

  二、互相讨论,解答疑点

  1、上面提出的问题,希望大家独立思考、独立完成。根据已有的思路和线索,参照课本上的方法进行分析。

  2、思考中实在是有困难的同学,可以和周围的同学互相讨论,发表看法;也可以请老师帮助、提示或指点。

  3、把同学之间讨论的结果,整理成一个完整的证明过程,写出每一步证明的根据。最后,适当地总结一些解题的经验和方法。

  三、讲评纠正,整理内容

  1、把学生讨论的结果归纳出来,加以补充说明,纠正错误后进行适当的分类总结,点明证题法中的要点。

  ①证明比例式的依据是平行截割定理的推论,因此,我们作的辅助线都是平行线。

  ②从上述几种证明方法可以看出,证明的关键在于通过作辅助线把某些线段“移动”到适当的位置,以便根据平行截割定理的推论得出所要的结论。

  ③辅助平行线的作法,只能是过xxx三点分别作不过、三点的边(线段)的平行线,和另一条边(线段)的延长线相交,构成一个等腰三角形,达到“移动”的目的。

  2、整理教学内容

  ⑴线段的内分点和外分点

  (ⅰ)定义:

  ①在线段上,把线段分成两条线段的点叫做这条线段的内分点。

  ②在线段的延长线上的点叫做这条线段的外分点。

  (ⅱ)举例

  点在线段上,把线段分成了和两条线段,所以,点是线段的内分点,线段和叫做点内分线段所得的两条线段。

  点在线段的延长线上,和、两个端点构成了、两条线段,所以,点是线段的外分点,线段和叫做点外分线段所得的两条线段。

  (ⅲ)条件

  ①内分点的条件:a)在已知线段上;

  b)把已知线段分成另外两条线段。

  ②外分点a)在已知线段的延长线上;

  b)和已知线段的两端点构成另外的两条线段。

  (ⅳ)特殊情况

  a)线段的中点是不是线段的内分点?内分点是不是线段的中点?

  b)线段的黄金分割点是不是线段的内分点?内分点是不是线段的黄金分割点?

  c)一条已知线段有几个中点?有几个黄金分割点?有几个内分点?几个外分点?

  (ⅰ)定理:三角形的内角平分线分对边所得的两条线段与夹这个角的两边对应成比例。

  (ⅱ)已知:中,平分,交于。

  求证:xxx。

  (ⅲ)简单分析

  从结论来考虑,横着看,两个比的前项、在中,两个比的后项、在中。按照相似三角形的性质,只要∽,那么,结论就是成立的。但是,与不是一对相似三角形,所以,不可能用相似三角形来证明。竖着看,有和,事实上,不成一个三角形。若是从“平行线分两条线段所得的.线段对应成比例”(平行截割定理的推论)来考虑,显然,图中也没有平行线。因此,要想得到结论,只有把其中的某条线段进行适当的移动,使其构成相似三角形的对应边,或者成为两条直线上被平行线截得的对应线段。这样,我们就确定了辅助线的作法以平行线为主。

  例如,把线段绕着它的端点旋转适当的角度到图中的位置(即的延长线)。由于旋转不改变线段的长度,所以,从旋转情况可得。由于平分,所以,连接后可以证明。因此,实际证明时,一般都叙述为“过点作交的延长线于”。不管是哪种说法,其结果都是一样的。类似地,我们还可以把线段绕着它的端点旋转适当的角度到端点落在线段的延长线上,同样也可以证明。

  (ⅳ)证法提要

  ①证法一:如上图,过点作交的延长线于,可以得到:a)(为什么?);b)(为什么?)。通过等量代换便可以得到结论。同样,过点作的平行线和边的延长线相交,也可以证得结论,证明的方法是完全一样的。

  ②证法二:如右图,过点作交的延长线于,可以得到:a)(为什么?);b)(为什么?)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和的延长线相交,也可以得到结论,证明的方法是完全一样的。

  ③证法三:如右图,过点作交于,可以得到:a)(为什么?);b)(为什么?);c)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和相交,也可以得到结论,证明的方法是完全一样的。

  ④证法四:如下页图,过点作交于,根据三角形的面积公式可得:xxx

  又根据正弦定理的面积公式有:

  通过比较就可以得到:所要的结论。

  (ⅰ)定理:三角形的外角平分线外分对边所得的两条线段与夹这个角的两边对应成比例。

  (ⅱ)已知:中,是的一个外角,平分,交的延长线于。

  求证:xxx。

  (ⅲ)简单分析:(类同内角平分线定理的分析方法)

  (ⅳ)证法提要;(类同内角平分线定理的分析方法)

  四、小结全节,练习巩固

  1、小结

  ⑴两个定理

  (ⅰ)三角形的内角平分线定理

  (ⅱ)三角形的外角平分线定理

  ⑵证明方法

  分为四大类共七种方法。

  2、练习

  ⑴教材,2、3两题。

  ⑵补充题:

  ①画任意一个三角形的某个角的内外角平分线,说明内外角平分线之间的关系,证明你的结论。

  ②画等腰三角形的外角平分线,说明外角平分线和底边之间的关系,证明你的结论。

  3、作业

  教材,17、18两题。

相关文章

小猪的新衣拓印画小班美术教案

活动目标: 1、学习拓印画的基本技能。 2、乐意参与活动,能大胆尝试用各种材料进行印画。 3、发现拓印画的特殊效果美,激发幼儿对美术活动的兴趣,获得成功的快乐。 活动准备: 1、白纸做的衣服8套,颜料...
教案大全2014-05-06
小猪的新衣拓印画小班美术教案

大班花样跳绳优秀教案(精简3篇)

大班花样跳绳优秀教案 活动目标 1、发展幼儿跳跃能力,增强动作协调性。 2、大胆想象,探索不同的跳绳方法,发展幼儿与人合作能力。 活动准备 1、幼儿人手一根跳绳,学会基本跳法。 2、录音机、磁带。 活...
教案大全2017-01-02
大班花样跳绳优秀教案(精简3篇)

《谭嗣同之死》教案【优选5篇】

【教学目标】学习谭嗣同舍生取义、视死如归的崇高品质,认识人物思想的局限性;学习本文运用多种手法刻画人物以及记叙、议论、抒情相结合的写作方法;了解“新文体”的语言特点。 【教学重点和难点】正...
教案大全2013-06-02
《谭嗣同之死》教案【优选5篇】

小学课文晏子使楚教案(精简3篇)

作为一名教职工,通常需要用到教案来辅助教学,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。如何把教案做到重点突出呢?以下是小编为大家整理的小学课文晏子使楚教案,仅供参考,希望能够帮助到大...
教案大全2014-07-01
小学课文晏子使楚教案(精简3篇)

《我看》教案

教学目标 知识与能力 1.理解、积累“丰润、红晕、翅翼”等词语。 2.感知诗中的形象,理解诗人的思路和全诗的主旨。 过程与方法 1.赏读诗歌,理解诗歌意境。 2.结合诗歌内容,理解诗人所表达的情感。...
教案大全2018-08-03
《我看》教案

《我爸爸》绘本教案

作为一名无私奉献的老师,常常需要准备教案,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?下面是小编收集整理的《我爸爸》绘本教案,欢迎大家借鉴与参考,希望对大家有所帮助。  《...
教案大全2013-07-03
《我爸爸》绘本教案