初一数学教案有序数对(经典3篇)
初一数学教案有序数对 篇一
有序数对在初一数学教学中的应用
有序数对是指由两个数按照一定顺序排列组成的一对数,通常用小括号表示,如(3, 5)。在初一数学教学中,有序数对是一个重要的概念,涉及到数学中的坐标系、函数关系等内容。下面我们来看看有序数对在初一数学教学中的具体应用。
首先,有序数对在坐标系中的应用。在二维直角坐标系中,每个点都可以表示为一个有序数对,如(2, 3)表示横坐标为2,纵坐标为3的点。通过有序数对,我们可以准确地表示平面上的点的位置,方便进行几何运算和图形的绘制。通过学习有序数对在坐标系中的应用,学生可以更好地理解几何知识,提高空间想象能力。
其次,有序数对在函数关系中的应用。在初一数学教学中,我们经常会涉及到函数关系,如y=x+1。这里的x和y就是一个有序数对,表示输入和输出之间的对应关系。通过学习有序数对在函数关系中的应用,学生可以更好地理解函数的概念,掌握函数的表示方法和性质,为以后的高中数学学习打下坚实的基础。
最后,有序数对在实际问题中的应用。在初一数学教学中,我们也会通过实际问题来引入有序数对的概念,如小明和小红同时从家出发,小明走了3公里,小红走了5公里,求两人之间的距离。这里可以用有序数对(3, 5)来表示两人的位置,通过计算距离来解决实际问题。通过这种方式,学生可以将抽象的数学概念和实际问题相结合,提高数学解决问题的能力。
总的来说,有序数对在初一数学教学中有着重要的应用价值,可以帮助学生更好地理解数学知识,提高数学解决问题的能力。教师在教学中应该注重培养学生对有序数对的认识和运用能力,引导他们将数学知识应用到实际问题中,提高数学学习的效果。
初一数学教案有序数对 篇二
有序数对在初一数学学习中的重要性
有序数对是数学中一个基础的概念,也是初一数学学习中的重要内容之一。有序数对不仅可以帮助学生更好地理解数学知识,还可以培养他们的逻辑思维能力和解决问题的能力。下面我们来探讨一下有序数对在初一数学学习中的重要性。
首先,有序数对可以帮助学生建立数学思维。在初一数学学习中,有序数对是一个基础的概念,涉及到数学中的坐标系、函数关系等内容。通过学习有序数对,学生可以培养对数学概念的理解和运用能力,建立起数学思维的基础。有序数对的概念简单清晰,适合初学者理解和掌握。
其次,有序数对可以帮助学生提高解决问题的能力。在初一数学学习中,我们经常会通过实际问题来引入有序数对的概念,如求两点之间的距离、表示函数关系等。通过解决这些实际问题,学生可以培养逻辑思维能力和解决问题的能力,提高数学学习的效果。有序数对是数学解决问题的基础,对学生的数学学习和思维能力有着重要的促进作用。
最后,有序数对可以帮助学生更好地理解数学知识。在初一数学学习中,有序数对是一个重要的概念,涉及到坐标系、函数关系等内容。通过学习有序数对,学生可以更好地理解数学概念,提高空间想象能力,为以后的高中数学学习打下坚实的基础。有序数对是数学知识的基础,对学生的数学学习起着重要的支撑作用。
综上所述,有序数对在初一数学学习中具有重要的意义,可以帮助学生建立数学思维、提高解决问题的能力、更好地理解数学知识。教师在教学中应该注重培养学生对有序数对的认识和运用能力,引导他们将数学知识应用到实际问题中,提高数学学习的效果。
初一数学教案有序数对 篇三
初一数学教案有序数对
学习目标:
1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。
2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。
3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
学习重点:理解有序数对的概念,用有序数对来表示位置。
学习难点:理解有序数对是有序的并用它解决实际问题,
学习过程:
一、 学前准备
预习疑难: 。
二、 探索与思考
1、 观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?
2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?
(1)如何找到6排3号这个座位呢?
(2)在电影票上6排3号与3排6号有什么不同?
(3)如果将6排3号简记作(6,3),那么3排6号如何表示?
(4)(5,6)表示什么含义?(6,5)呢?
3、结论:①可用排数和列数两个不同的数来确定位置;
②排数和列数的先后顺序对位置有影响。
4、概念:
有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。
三、 理解与运用
(一)用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?
(二)应用
例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?
分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:
(3,5)(4,5)(4,4)(5,4)(5,3);
(3,5)( ,5)(4,4)( , )(5,3);
(3,5)( , )( , )( , )(5,3);
四、学习体会:
1、 本节课你有哪些收获?你还有哪些疑惑?
2、 预习时的疑难解决了吗?
五、自我检测
1、小游戏:
怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置. 如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置. 那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?
2、如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
3、右图是国际象棋的棋盘,E2在什么位置?又如何描述A、B、C的位置?
4、有趣玩一玩:
中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。
要将图六(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)(六,5)(四,4)(五,2)(六,4)
(1) 下面提供另一走法,请填上所缺的一步:(四,6)(五,8)(七,7)___(六,4)
(2)请你再给出另一种走法(要与前面的两种走法不完全相同即可,步数不限),你的走法是:
六、方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
1、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么
数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
2、如图是某城市市区的一部分示意图,对市政府来说:
(1) 北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?
(2) 火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
课题:6.1.2平面直角坐标系(第一课时) 课型:新授
学习目标:1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.
2.认识并能画出平面直角坐标系.
3.能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置
学习重点:根据点的坐标在直角坐标系中描出点的位置。
学习难点:探索特殊的点与坐标之间的关系。
学具准备:坐标纸,三角板
学习过程:
一、学前准备
1、预习疑难: 。
2、填空:①规定了 、 、 的直线叫做数轴。
②数轴上原点及原点右边的点表示的数是 ;原点左边的点表示的数是 。
③画数轴时,一般规定向 (或向 )为正方向。
二、探索与思考
(一)平面直角坐标系
1、观察:在数轴上,点A的坐标为 ,点B的坐标为 。
即:数轴上的点可以用一个 来表示,这个数叫做这个点的 。
反过来,知道数轴上的一个点的坐标,这个点在数轴上的位置也就确定了。
2、思考:能不能有一种办法来确定平面内的点的位置呢?
3、平面直角坐标系概念:
平面内画两条互相 、原点 的数轴,组成平面直角坐标系.
水平的数轴称为 或 ,习惯上取向 为正方向;
竖直的数轴为 或 ,取向 为正方向;
两个坐标轴的交点为平面直角坐标系的 。
4、点的坐标:
我们用一对 表示平面上的点,这对数叫 。表示方法为(a,b).a是点对应 上的数值,b是点在 上对应的数值。
(二)如何在平面直角坐标系中表示一个点
1、以A(2,3)为例,表示方法为:
A点在x轴上的坐标为 ,A点在y轴上的坐标为 ,
A点在平面直角坐标系中的坐标为(2,3),记作:A(2,3)
2、方法归纳:由点A分别向X轴和 作垂线。
3、强调:X轴上的坐标写在前面。
4、活动:你能说出点B、C、D的坐标吗?
注意:横坐标和纵坐标不要写反。
5、思考归纳:原点O的坐标是( , ),
x轴上的点纵坐标都是 , y轴上的横坐标都是 。
横轴上的点坐标为(x,0) ,纵轴上的点坐标为(0,y)
(三)象限:
1、 建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
第二象限(,+) 第一象限(+,+)
第三象限(,) 第四象限(+,)
2、注意:坐标轴上的点不属于任何一个象限
3、你能说出上面例子中各点在第几象限吗?
三、理解与运用
1、在游戏中学数学:以某同学为原点,以他所在的横排为x轴,以这一组为y轴,相邻两个同学之间的距离为单位长度建立坐标系.
(1)下面大家一起找一找自己在坐标系中的.坐标分别是什么?
(2)下面这些坐标分别表示谁的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)
2、例 写出图中的多边形ABCDEF各个顶点的坐标.
(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?
(2)线段CE的位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
3、归纳:点的位置及其坐标特征:
①.各象限内的点;
②.各坐标轴上的点;
③.各象限角平分线上的点;
④.对称于坐标轴的两点;
⑤.对称于原点的两点。
4、对应练习:教材43页1、2题(在书上完成)。
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
(一)选择题:
1、若点M(x,y)满足x+y=0,则点M位于( )。
(A)第一、三象限两坐标轴夹角的平分线上; (B)x轴上;
(C) x轴上; (D)第二、四象限两坐标轴夹角的平分线上。
2、第四象限中的点P(a,b)到x轴的距离是( )
(A)a (B)-a (C)-b (D)b
3、点A(-m,1-2m)关于原点对称的点在第一象限,那么m的取值范围是( )。
(A)m(B)m (C)m (D)m0 。
(二)填空题:
1、点P(3,-4)关于原点的对称点的坐标为___________;关于x轴的对称点的坐标为___________;关于y轴的对称点的坐标为____________
2、已知A(a,6),B(2,b)两点。
①当A、B关于x轴对称时,a=_____;b=_____。
②当A、B关于y轴对称时,a=_____;b=_____。
③当A、B关于原点对称时,a=_____;b=_____。
六、解答题
1.在下图中,分别写出八边形各个顶点的坐标.
2.下图是画在方格纸上的某岛简图.
(1)分别写出地点A,L,O,P,E的坐标;
(2)(4,7)(5,5)(2,5)所代表的地点分别是什么?