梯形面积计算教案【优质3篇】

梯形面积计算教案 篇一

在数学学习中,梯形是一个非常基础但又重要的几何形状,我们经常会碰到需要计算梯形面积的问题。因此,今天我们就来学习一下如何计算梯形的面积。

首先,让我们回顾一下梯形的定义。梯形是一个有四边的几何形状,其中两边平行,另外两边不一定平行。我们通常将这两个平行的边称为上底和下底,而连接这两个底的两条边则称为斜边。梯形的高是从一条平行边到另一条平行边的垂直距离。

要计算梯形的面积,我们可以利用以下公式:

面积 = (上底 + 下底)* 高 / 2

现在,让我们通过一个例子来演示如何计算梯形的面积。假设一个梯形的上底长为5cm,下底长为9cm,高为4cm。我们可以按照上面的公式进行计算:

面积 = (5 + 9)* 4 / 2

面积 = 14 * 4 / 2

面积 = 56 / 2

面积 = 28

因此,这个梯形的面积为28平方厘米。

在实际问题中,我们可能会碰到更复杂的梯形,需要更多的计算步骤。但是只要我们掌握了梯形面积的计算方法,就能够应对各种情况。希望通过今天的学习,大家能够更加熟练地计算梯形的面积。

梯形面积计算教案 篇二

在上一篇文章中,我们学习了如何计算梯形的面积。今天,我们将进一步探讨梯形的性质和一些相关的问题。

首先,让我们来看一下梯形的性质。梯形的两个底角是对顶角,即上底角和下底角相等;梯形的两个非对顶角也相等。这些性质在解决问题时非常有用,可以帮助我们简化计算步骤。

接下来,我们来看一个实际问题。假设一个梯形的上底长为6cm,下底长为10cm,高为8cm。现在要求我们计算这个梯形的斜边长。我们可以利用勾股定理来解决这个问题。首先,我们可以通过勾股定理计算出梯形的斜边与高的关系:

斜边^2 = 高^2 + (下底 - 上底)^2

斜边^2 = 8^2 + (10 - 6)^2

斜边^2 = 64 + 16

斜边^2 = 80

斜边 ≈ 8.94

因此,这个梯形的斜边长约为8.94厘米。

通过这个问题,我们不仅学会了如何应用勾股定理来计算梯形的斜边长,还加深了对梯形性质的理解。希望大家在今后的学习中能够灵活运用这些知识,解决各种与梯形相关的问题。

梯形面积计算教案 篇三

梯形面积计算教案

梯形面积的计算 教学目标:1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。 2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。 3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。 教学重点:理解、掌握梯形面积的计算公式。 教学难点:理解梯形面积公式的推导过程。 教学过程: 1.导入新课 (1)投影出示一个三角形,提问: 这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。 (2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。 (3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算) 2.新课展开 第一层次,推导公式 (1)操作学具 ①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的'图形,计算出它的面积吗? ②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。 ③指名学生操作演示。 ④教师带领学生共同操作:梯形(重叠)旋转平移平形四边形。 (2)观察思考 ①教师提出问题引导学生观察。 a.用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系? b.每个梯形的面积与拼成的平形四边形的面积有什么关系? (3)反馈交流,推导公式。 ①学生回答上述问题。 ②师生共同总结梯形面积的计算公式。 板书:梯形的面积=(上底+下底)×高÷2 ③字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢? 学生回答后,教师板书:“S=(a+b)h÷2”。 第二层次,深化认识。 (1)启发学生回忆平行四边形面积公式的推导方法。 ①提问:想一想平行四边形面积公式是怎样推导得到的? ②学生回答,教师在展示台再现平行四边形面积公式的推导方法。 (2)引导操作。 ①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢? ②学生动手操作、探究、讨论,教师作适当指导。 (3)信息反馈,扩展思路。 说一说你是怎样割补的?教师展示各种割补方法。 第三层次,公式应用。 (1)出示课本第89页的例题,教师指导学生理解“横截面”。 (2)学生尝试解答

。 (3)展示台出示例题的解答,反馈矫正。 (4)完成例题下面的“做一做”。 3.巩固练习 (1)完成练习十七第1、2和3题。 (2)讨论完成练习十七第4和6题。 4.全课小结。

相关文章

《孔乙己》教案【优选6篇】

作为一名默默奉献的教育工作者,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。那么优秀的教案是什么样的呢?以下是小编为大家整理的《孔乙己》教案范文,欢迎阅读,希望大家能够喜欢。  《...
教案大全2012-06-09
《孔乙己》教案【优选6篇】

中班体育好玩的纸箱教案

作为一名专为他人授业解惑的人民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。我们该怎么去写教案呢?下面是小编整理的中班体育好玩的纸箱教案,希望能够帮助到大家。  中班体育好玩的纸箱教案...
教案大全2018-04-09
中班体育好玩的纸箱教案

睡觉(最新6篇)

睡觉1【活动目标】1、在睡午觉时,能把脱下的衣裤鞋子,较整齐地放在固定处。并学习何钻被窝入睡,加强保暖。2、逐步养成良好的午睡习惯。【重点与难点】1、让幼儿懂得怎样午睡好;学习一些正确的午睡方法,逐步...
教案大全2011-09-09
睡觉(最新6篇)

课文《田忌赛马》教案【经典3篇】

教学内容 :《15.田忌赛马》课后选做题 教学目标 : 1、通过学生自制道具,边演示边解说两次赛马的经过,加深对课文内容的理解,培养学生的动手能力和口头表达能力。 2、学生通过收集、整理自己感兴趣的、...
教案大全2012-08-05
课文《田忌赛马》教案【经典3篇】

欧洲西部教案

欧洲西部教案2011-02-26 11:13欧洲西部教案按教材内容分配为两个课时,本篇为第1课时,可能内容分配不甚恰当,请各位初中地理老师适当调整内容。欧洲西部教案遵循目前学校自学合作学习为主的教学理...
教案大全2011-08-09
欧洲西部教案

《竹影》教案【通用3篇】

[教学设计A] 创意说明:以合作的形式,层层深入地探究,是本设计的特点。这篇自渎课文看似浅显,不过是写了童年时期一个有趣的游戏,其实作者在这个游戏的回忆中,有两个发人深思的...
教案大全2013-06-01
《竹影》教案【通用3篇】