数学因式分解八年级上册教案【精选3篇】

数学因式分解八年级上册教案 篇一

在数学课堂上,因式分解是一个非常重要的概念。通过因式分解,学生可以将一个多项式表达式分解为乘积形式,这有助于简化计算和解决问题。在八年级上册的课程中,学生将开始学习因式分解的基本原理和方法。下面是一个典型的因式分解教案,帮助学生更好地理解这一概念。

教学目标:

1. 理解因式分解的定义和作用。

2. 掌握因式分解的基本方法和技巧。

3. 能够应用因式分解解决实际问题。

教学准备:

1. 黑板、粉笔、教科书。

2. 练习题和作业题。

3. 讲义和教案。

教学步骤:

1. 引入因式分解的概念,简单解释什么是因式分解,为什么要进行因式分解。

2. 通过实例讲解基本的因式分解方法,例如提取公因式、分组分解等。

3. 让学生做一些简单的练习,巩固基本的因式分解技巧。

4. 引导学生探讨因式分解在解决实际问题中的应用,例如化简表达式、求解方程等。

5. 给学生布置作业,包括一些练习题和应用题,巩固所学知识。

6. 总结本节课的内容,强调因式分解的重要性和实用性。

通过这样的教学过程,学生可以逐渐掌握因式分解的基本原理和方法,提高他们的数学思维能力和解题能力。希望学生在学习因式分解的过程中能够加深对数学的理解,为更高级的数学知识打下良好的基础。

数学因式分解八年级上册教案 篇二

在数学课堂上,因式分解是一个非常重要的概念。通过因式分解,学生可以将一个多项式表达式分解为乘积形式,这有助于简化计算和解决问题。在八年级上册的课程中,学生将开始学习因式分解的基本原理和方法。下面是一个典型的因式分解教案,帮助学生更好地理解这一概念。

教学目标:

1. 理解因式分解的定义和作用。

2. 掌握因式分解的基本方法和技巧。

3. 能够应用因式分解解决实际问题。

教学准备:

1. 黑板、粉笔、教科书。

2. 练习题和作业题。

3. 讲义和教案。

教学步骤:

1. 引入因式分解的概念,简单解释什么是因式分解,为什么要进行因式分解。

2. 通过实例讲解基本的因式分解方法,例如提取公因式、分组分解等。

3. 让学生做一些简单的练习,巩固基本的因式分解技巧。

4. 引导学生探讨因式分解在解决实际问题中的应用,例如化简表达式、求解方程等。

5. 给学生布置作业,包括一些练习题和应用题,巩固所学知识。

6. 总结本节课的内容,强调因式分解的重要性和实用性。

通过这样的教学过程,学生可以逐渐掌握因式分解的基本原理和方法,提高他们的数学思维能力和解题能力。希望学生在学习因式分解的过程中能够加深对数学的理解,为更高级的数学知识打下良好的基础。

数学因式分解八年级上册教案 篇三

新人教版数学因式分解八年级上册教案

  教学目标

  1.知识与技能

  了解因式分解的意义,以及它与整式乘法的关系.

  2.过程与方法

  经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.

  3.情感、态度与价值观

  在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.

  重、难点与关键

  1.重点:了解因式分解的意义,感受其作用.

  2.难点:整式乘法与因式分解之间的关系.

  3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.

  教学方法

  采用“激趣导学”的教学方法.

  教学过程

  一、创设情境,激趣导入

  【问题牵引】

  请同学们探究下面的2个问题:

  问题1:720能被哪些数整除?谈谈你的想法.

  问题2:当a=102,b=98时,求a2-b2的值.

  二、丰富联想,展示思维

  探索:你会做下面的填空吗?

  1.ma+mb+mc=( )( );

  2.x2-4=( )( );

  3.x2-2xy+y2=( )2.

  【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.

  三、小组活动,共同探究

  【问题牵引】

  (1)下列各式从左到右的变形是否为因式分解:

  ①(x+1)(x-1)=x2-1;

  ②a2-1+b2=(a+1)(a-1)+b2;

  ③7x-7=7(x-1).

  (2)在下列括号里,填上适当的项,使等式成立.

  ①9x2(______)+y2=(3x+y)(_______);

  ②x2-4xy+(_______)=(x-_______)2.

  四、随堂练习,巩固深化

  课本练习.

  【探研时空】计算:993-99能被100整除吗?

  五、课堂总结,发展潜能

  由学生自己进行小结,教师提出如下纲目:

  1.什么叫因式分解?

  2.因式分解与整式运算有何区别?

  六、布置作业,专题突破

  选用补充作业.

  板书设计

  15.4.1 因式分解

  1、因式分解 例:

  练习:

  15.4.2 提公因式法

  教学目标

  1.知识与技能

  能确定多项式各项的公因式,会用提公因式法把多项式分解因式.

  2.过程与方法

  使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.

  3.情感、态度与价值观

  培养学生分析、类比

以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.

  重、难点与关键

  1.重点:掌握用提公因式法把多项式分解因式.

  2.难点:正确地确定多项式的最大公因式.

  3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  教学方法

  采用“启发式”教学方法.

  教学过程

  一、回顾交流,导入新知

  【复习交流】

  下列从左到右的变形是否是因式分解,为什么?

  (1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  问题:

  1.多项式mn+mb中各项含有相同因式吗?

  2.多项式4x2-x和xy2-yz-y呢?

  请将上述多项式分别写成两个因式的乘积的形式,并说明理由.

  【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.

  二、小组合作,探究方法

  【教师提问】 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?

  【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.

  三、范例学习,应用所学

  【例1】把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  【例2】分解因式,3a2(x-y)3-4b2(y-x)2

  【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)23a2(y-x)+4b2(y-x)2]

  =-(y-x)2 [3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)23a2(x-y)-4b2(x-y)2

  =(x-y)2 [3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.

  【教师活动】引导学生观察并分析怎样计算更为简便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?

  四、随堂练习,巩固深化

  课本P167练习第1、2、3题.

  【探研时空】

  利用提公因式法计算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、课堂总结,发展潜能

  1.利用提公因式法因式分解,关键是找准最大公因式.在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.

  2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.

  六、布置作业,专题突破

  课本P170习题15.4第1、4(1)、6题.

  板书设计

  15.4.2 提公因式法

  1、提公因式法 例:

  练习:

  15.4.3 公式法(一)

  教学目标

  1.知识与技能

  会应用平方差公式进行因式分解,发展学生推理能力.

  2.过程与方法

  经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.

  3.情感、态度与价值观

  培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.

  重、难点与关键

  1.重点:利用平方差公式分解因式.

  2.难点:领会因式分解的解题步骤和分解因式的`彻底性.

  3.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.

  教学方法

  采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.

  教学过程

  一、观察探讨,体验新知

  【问题牵引】

  请同学们计算下列各式.

  (1)(a+5)(a-5); (2)(4m+3n)(4m-3n).

  【学生活动】动笔计算出上面的两道题,并踊跃上台板演.

  (1)(a+5)(a-5)=a2-52=a2-25;

  (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

  【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.

  1.分解因式:a2-25; 2.分解因式16m2-9n.

  【学生活动】从逆向思维入手,很快得到下面答案:

  (1)a2-25=a2-52=(a+5)(a-5).

  (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

  【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.

  平方差公式:a2-b2=(a+b)(a-b).

  评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).

  二、范例学习,应用所学

  【例1】把下列各式分解因式:(投影显示或板书)

  (1)x2-9y2; (2)16x4-y4;

  (3)12a2x2-27b2y2; (4)(x+2y)2-(x-3y)2;

  (5)m2(16x-y)+n2(y-16x).

  【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.

  【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.

  【学生活动】分四人小组,合作探究.

  解:(1)x2-9y2=(x+3y)(x-3y);

  (2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

  (3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

  (4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);

  (5)m2(16x-y)+n2(y-16x)

  =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

  三、随堂练习,巩固深化

  课本P168练习第1、2题.

  【探研时空】

  1.求证:当n是正整数时,n3-n的值一定是6的倍数.

  2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.

  四、课堂总结,发展潜能

  运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.

  五、布置作业,专题突破

  课本P171习题15.4第2、4(2)、11题.

  板书设计

  15.4.3 公式法(一)

  1、平方差公式: 例:

  a2-b2=(a+b)(a-b) 练习:

  15.4.3 公式法(二)

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力.

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用.

  2.难点:灵活地应用公式法进行因式分解.

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

  教学过程

  一、回顾交流,导入新知

  【问题牵引】

  1.分解因式:

  (1)-9x2+4y2; (2)(x+3y)2-(x-3y)2;

  (3) x2-0.01y2.

相关文章

幼儿园小班社会课教案《他们的衣服》

作为一名无私奉献的老师,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么优秀的教案是什么样的呢?下面是小编收集整理的幼儿园小班社会课教案《他们的衣服》,欢迎大家借鉴与参考,希望对大家...
教案大全2018-08-02
幼儿园小班社会课教案《他们的衣服》

初中物理分子热运动的教案设计

作为一名辛苦耕耘的教育工作者,往往需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。来参考自己需要的教案吧!下面是小编精心整理的初中物理分子热运动的教案设计,仅供参考,...
教案大全2016-01-05
初中物理分子热运动的教案设计

《小帮手》中班科学教案(优选3篇)

活动目标: 1、探索发现各种工具固定图书的方法。 2、进行简单统计,提高认知能力、观察能力、操作能力、记录能力。 3、能积极参与装订图书活动,体验观察和探索的乐趣。 4、体验互相合作的快乐及获得成功的...
教案大全2018-05-03
《小帮手》中班科学教案(优选3篇)

19《黄河象》教学设计之二(最新3篇)

第一课时 教学要求: 理解课文内容,了解科学家假想黄河象化石来历的依据,培养逻辑思维能力和探索科学知识的兴趣。 理清课文叙述顺序,理解各段间的内在联系,体会科学家推理的条理和严密。 练习创造性地...
教案大全2015-08-08
19《黄河象》教学设计之二(最新3篇)

《悯农》语文优秀教案【推荐6篇】

作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编收集整理的《悯农》语文优秀教案 ,欢迎大家借鉴与参...
教案大全2016-03-07
《悯农》语文优秀教案【推荐6篇】

幼儿心理健康教案(经典6篇)

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是小编整理的...
教案大全2015-07-08
幼儿心理健康教案(经典6篇)