排列组合练习题及其答案
排列组合练习题及其答案
45分钟限时训练:排列组合
1.若6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为______. 2.若有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法种数为______.
3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数的个数为______.
4.男女学生共8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,则女生人数为______. 5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法数为______.
6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案数为______.
7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为______.
8.由1、2、3、4、5、6组成没有重复数字,且1、3都不与5相邻的六位偶数的个数是______.
9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有______.
10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法数为______.
11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列的不同排法数为______. 12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案数为______.
13.要在如图所示的花圃中的5个区域中种入4种不同颜色的花,要求相邻区域不同色,的种花方法数为______.
14.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法数为______.
15.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为______.
16.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是______.
17.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有______.
18.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为______.
19.将5名实习教师分到高一年级的`3个班实习,每班至少1名,最多2名,则不同的分配方案数为______. 20.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案数为数为______.
21.已知2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是______.
22.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位______.
23.在12个篮球队中有3个
强队,若将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为______.24.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是______.
请将答案填写在下表中