高中数学定理证明

高中数学定理证明

高中数学定理证明

数学公式

抛物线:y = ax *+ bx + c

就是y等于ax 的平方加上 bx再加上 c

a > 0时开口向上

a < 0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

还有顶点式y = a(x+h)* + k

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求最大值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆:体积=4/3(pi)(r^3)

面积=(pi)(r^2)

周长=2(pi)r

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

(一)椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(二)椭圆面积计算公式

椭圆面积公式: S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高

三角函数:

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的'关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有两个不相等的个实根

b2-4ac<0 注:方程有共轭复数根

公式分类 公式表达式

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

图形周长 面积 体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦-公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)

| a b 1 |

S△=1/2 * | c d 1 |

| e f 1 |

【| a b 1 |

| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC

| e f 1 |

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】

秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

直径=半径×2 半径=直径÷2

圆的周长=圆周率×直径=

圆周率×半径×2

圆的面积=圆周率×半径×半径

长方体的表面积=

(长×宽+长×高+宽×高)×2

长方体的体积 =长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体)

的体积=底面积×高

平面图形

名称 符号 周长C和面积S

正方形 a—边长 C=4a

S=a2

长方形 a和b-边长 C=2(a+b)

S=ab

三角形 a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2 S=ah/2

=ab/2?sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

1 过两点有且只有一条直线

2 两点之间线段最短

3 同角或等角的补角相等

4 同角或等角的余角相等

5 过一点有且只有一条直线和已知直线垂直

6 直线外一点与直线上各点连接的所有线段中,垂线段最短

7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8 如果两条直线都和第三条直线平行,这两条直线也互相平行

9 同位角相等,两直线平行

10 内错角相等,两直线平行

11 同旁内角互补,两直线平行

12两直线平行,同位角相等

13 两直线平行,内错角相等

14 两直线平行,同旁内角互补

15 定理 三角形两边的和大于第三边

16 推论 三角形两边的差小于第三边

17 三角形内角和定理 三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余

19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

21 全等三角形的对应边、对应角相等

22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全

24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

25 边边边公理(sss) 有三边对应相等的两个三角形全等

26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等

28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29 角的平分线是到角的两边距离相等的所有点的集合

30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33 推论3 等边三角形的各角都相等,并且每一个角都等于60°

34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35 推论1 三个角都相等的三角形是等边三角形

36 推论 2 有一个角等于

相关文章

教师工作经历证明

在日常的学习、工作、生活中,大家都写过证明吧,证明是由机关、学校、团体等发的证明自己身份、经历或某事真实性的一种凭证。想拟证明却不知道该请教谁?下面是小编精心整理的教师工作经历证明,希望对大家有所帮助...
条据书信2016-04-05
教师工作经历证明

邀请聚会的通知范文大全通用52篇(优质3篇)

邀请聚会的通知范文大全 第一篇亲爱的同学:你好!时光荏苒,岁月如梭。一转眼,我们走出母校的大门已有(难么多)年之久了,如果不去刻意计算,谁又会想到,居然已经这么久了。一别(某某)载,同窗的好友身居何方...
条据书信2014-01-01
邀请聚会的通知范文大全通用52篇(优质3篇)

打牌检讨书

在有过错的情况下,为了避免今后再出现此类事件,我们要通过写检讨书来进行自我反省,请注意写检讨书的心态要端正。还是对检讨书一筹莫展吗?下面是小编帮大家整理的打牌检讨书,仅供参考,欢迎大家阅读。打牌检讨书...
条据书信2018-09-07
打牌检讨书

七夕给老婆发的祝福短信

1、七夕将至,作为好兄弟的我华丽丽地赠送给你对联一副。上联:横眉冷对众。下联:俯首甘为老光棍。横批:逗你玩。哈哈,七夕快乐!2、七夕到了,其他人都成双成对的出去了,单身的不用怕!七夕当天免费与你聊个痛...
条据书信2018-02-07
七夕给老婆发的祝福短信

信息化工作简报

在日常生活或是工作学习中,大家一定没少看到过简报吧,简报作为加强领导和推动工作的重要工具,内容必须保证绝对真实、准确。简报到底怎么拟定才合适呢?下面是小编帮大家整理的信息化工作简报范文(精选8篇),欢...
条据书信2012-08-04
信息化工作简报

家长写给老师的一封信

在平平淡淡的学习、工作、生活中,大家总少不了接触书信吧,书信是一种应用文体,是人们普遍使用的一种交际工具。你知道书信怎样才能写的好吗?以下是小编为大家整理的家长开学写给老师的一封信(精选7篇),欢迎大...
条据书信2017-05-04
家长写给老师的一封信