教学课件高中数学

教学课件高中数学

  集合是高一数学的第一课,下面是小编为你整理了高中数学集合教学设计,希望对你有帮助。

  数学集合教学设计【教学目的】

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  数学集合教学设计【重点难点】

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  数学集合教学设计【内容分析】

  1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

  集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

  数学集合教学设计【教学过程】

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的'集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  数学集合教学设计【小结】

  1.集合的有关概念:(集合、元素、属于、不属于)

  2.集合元素的性质:确定性,互异性,无序性

  3.常用数集的定义及记法


相关文章

六年级数学下学期期末试卷质量分析

每次考试过后老师都会做一份试卷分析以总结学生在本次考试中的表现,方便查漏补缺,建立新的教学方法,下面是小编为大家带来的六年级数学下学期期末试卷质量分析,仅供参考。  一、对试题的分析  1、试卷结构与...
题目课件2011-09-05
六年级数学下学期期末试卷质量分析

谈判技巧

许多经理人直到发现国外谈判战略出现问题时,才意识到文化差异的影响。从其他文化中学习一些谈判策略,可以减少跨文化谈判的风险,并提高你在本国谈判的技巧。 你是一个典型的美国式谈判者吗?对于其他文化的谈判...
题目课件2015-01-08
谈判技巧

《宋史李昭述传》原文与阅读答案

李昭述字仲祖,以父荫为秘书省校书郎。各试学士院,赐进士出身,为刑部详覆官,累迁秘书丞。群牧制置使曹利用荐为判官,郓州牧地侵于民者凡数千顷,昭述悉复之。以太常博士知开封县,特迁尚书屯田员外郎、开封推官。...
题目课件2013-07-07
《宋史李昭述传》原文与阅读答案

期货从业资格练习题及答案

1.下列关于跨商品.套利的说法,正确的是( )。[2010年9月真题] A.当小麦期货价格高出玉米期货价格的程度远大于市场正常年份的水平,应同时买入 玉米期货合约、卖出小麦期货合约进行套利 B.当小麦...
题目课件2015-06-07
期货从业资格练习题及答案

《芙蕖》阅读答案

语文阅读理解在语文教学占有越来越重要的位置。它不仅是学生日常获取知识、信息重要方法,也是学生自身全面发展的必然需要和适应未来信息社会的必备技能。 芙蕖 (节选自清李渔《翁笠偶集种植部》) 【原文】 (...
题目课件2012-05-07
《芙蕖》阅读答案

《陶潜,字元亮》阅读答案

阅读下面的文言文,完成小题。 陶潜,字元亮,大司马侃之曾孙也。祖茂,武昌太守。潜少怀高尚,博学善属文,颖脱不羁,任真自得,为乡邻之所贵。尝著《五柳先生传》以自况。 以亲老家贫,起为州祭酒,不堪吏职,少...
题目课件2017-03-04
《陶潜,字元亮》阅读答案