应用题教学设计(通用5篇)
应用题教学设计 篇一
在教学中,应用题是非常重要的一种教学形式。通过应用题的设计,可以帮助学生将所学知识运用到实际问题中,提高他们的分析和解决问题的能力。下面我将分享一个应用题教学设计的案例。
题目:小明和小红两个人同时从A地出发,小明以每小时5公里的速度向北行进,小红以每小时4公里的速度向西行进。他们相隔10公里时,求他们离A地点的距离。
教学目标:
1. 学生能够运用勾股定理解决实际问题。
2. 学生能够通过解决问题提高数学推理能力和解决问题的能力。
教学过程:
1. 引入问题:通过引入问题,激发学生的兴趣,让他们思考如何通过数学知识解决实际问题。
2. 解决问题:学生首先应该画出示意图,然后利用勾股定理解决问题。可以通过列方程的方式,或者通过画直角三角形的方式求解。
3. 分享解题思路:老师可以邀请学生分享自己的解题思路,鼓励他们多角度思考问题。
4. 练习巩固:老师可以设计类似的练习题目,让学生独立解答,巩固所学知识。
通过这样的应用题教学设计,可以帮助学生更好地理解数学知识,并将其应用到实际问题中,提高他们的解决问题能力。
应用题教学设计 篇二
在数学教学中,应用题的设计是非常重要的。通过应用题,可以帮助学生将所学知识与实际问题相结合,提高他们的解决问题的能力。下面我将分享一个应用题教学设计的案例。
题目:某地有一座高山,山顶上建有一座观景台。观景台高度为100米,从山脚到山顶的直线距离为500米。现有一位游客站在山脚下,他想知道他与观景台的夹角是多少度。
教学目标:
1. 学生能够应用三角函数解决实际问题。
2. 学生能够通过解决问题提高数学推理能力和解决问题的能力。
教学过程:
1. 引入问题:通过引入问题,激发学生的兴趣,让他们思考如何通过三角函数解决实际问题。
2. 解决问题:学生可以利用正切函数求解,通过计算得出角度。
3. 分享解题思路:老师可以邀请学生分享自己的解题思路,鼓励他们多角度思考问题。
4. 练习巩固:老师可以设计类似的练习题目,让学生巩固所学知识。
通过这样的应用题教学设计,可以帮助学生更好地理解三角函数知识,并将其应用到实际问题中,提高他们的解决问题能力。同时,通过解决实际问题,还可以增强学生对数学的兴趣和信心。
应用题教学设计 篇三
教学要求:
1使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。
2使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。
教学过程:
一、揭示课题
1、口算。
让学生口算练习二十二第3题。
2、引入课题。
我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。
二、复习比与除法、分数的关系
1、提问:比与除法、分数有什么关系?
2、出示:甲数与乙数的比是1:4。提问:根据甲数与乙数的比是1:4,你能用分数、倍数关系表示甲数与乙数的关系吗?
3、做练习二十二第4题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。
三、用不同方法解答应用题
1、说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的应用题。
2、做“练一练”第1题。
让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1:15可以怎样理解?提问:按照1:15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。
提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?
第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1:15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。
3、做“练—练”第2题。
学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。
4、做练习二十二第5题。
让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的?
5、讨论练习二十二第6题。
请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的人数对应的份数各是怎样的?
6、做练习二十二第7题。
让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的.数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。
四、课堂小结
提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。
五、布置作业
课堂作业:练习二十二第6、8题。
家庭作业:“练一练”第3题。
应用题教学设计 篇四
一、情景引入
出示一堆煤的情景图,图中标明煤的重量为1吨,一个炊事员说:“这堆煤计划烧40天。”
你们知道这句话是什么意思吗?
后来在实际烧的过程中,情况发生了变化,你们想知道发生了什么变化吗?
那么我们今天就一起来学习有关计划与实际比较的应用题。
(板书课题)
二、教学新课
1、教学例2
在情景图上加上另一个炊事员的对话框:“由于改进炉灶,每天节省5千克。”
你们知道发生了什么新情况吗?
根据上面的情景,你能编出应用题吗?
根据学生的编的应用题,选出与例2有似的问题
(1)读题,审题,分析数量关系
要求改进炉灶后,这批煤可以烧多少天。要知道哪两个条件?我们应该先求什么?
(2)你用什么方法来理解题目中的数量关系?
(3)让学生尝试解答。
2、如果把题目里的第三个已知条件和问题改成“改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?”该怎样解答?
(1)让学生自己分析数量关系后列式解答。
(2)讲评时让学生说出分析过程。
(3)引导学生看一看例2与改编后的题目的联系和区别
3、做一做
(1)让学生独立完成做一做。
(2)指名板演,其余做在本子上,帮助学困生。
(3)集体评讲。
三、课堂练习
1、新华乡计划25天修渠道1350米,实际每天比计划多修21米,实际只要多少天就能完成任务?要求出实际只要多少天就能完成任务,必须先算出下面的哪个问题?怎样算?再求哪个问题?
(1)实际要修多少天?
(2)实际每天修多少米?
(3)提前几天修完?
2、有一堆化肥,原计划每天生产1.8吨,20天完成,由于改进技术,每天比计划多生产0.2吨,实际多少天完成?
四、作业:
课本第51页的1——5题
板书:
有关计划与实际比较的应用题
计划每天烧煤多少千克?1000÷40=25(千克)
改进炉灶后每天烧煤多少千克?25-5=20(千克)
这些煤可以烧多少天?1000÷20=50(天)
列综合算式
1000÷(1000÷40-5)
=1000÷(25-5)
=1000÷20
=50(天)
答:
应用题教学设计 篇五
教学内容:
应用题例1
课时目标:
1、使学生理解连乘应用题的数量关系。
2、理解两种解法的思路,掌握两种解题的方法。
3、知道用一种解法检查另一种解法的正确性。
教学重点、难点:
掌握两种方法解题的思路,并掌握解题方法。
板书设计:
应用题
(一)每箱卖多少元?
(二)5箱有多少个?
(学生板演处)
教学程序:
一、创设情境
师:“六一”儿童节就要到了,为了把我班打扮得漂漂亮亮,想买一些彩丝,买两捆,每捆10条,每条5角,请同学们算一算,一共要花多少钱?
二、自主探究
1、学生读题,理解题意。
2、学生自己完成,教师巡视,把学生不同解法板演到黑板上。
(一)2×10=20(条)
(二)10×5=50(角)
20×5=100(角)=10(元)
50×2=100(角)=10(元)
学生讨论:那种方法准确,每一步求什么?
3、列综合算式该怎样做?
学生自己列综合算式交流讨论
师强调列综合算式时要注意使用小括号。
三、巩固练习
做一做
学生独立完成然后指名板演并说说你的想法。
四、实践应用
练习二十二第4、5题
独立完成,再订正。
五、交流收获
今天,我们学到了什么?
六、作业(略)
《连乘应用题》教学反思
我采用了“引出问题——自主探究——小组合作——集体讨论——归纳总结——深化知识的思路进行教学的。在教学中,教师要给予学生充分的时间,注意保护学生的创造性思维,对有创新的学生,要给他发挥自己想象能力、思维能力的空间及表现自己的机会。同时,注意挖掘学生的想象潜能,激发学生的创新意识,发展学生的逻辑思维、语言表达及创新能力。
我觉得在新课标的指引下只要学生能够合理推理解答,求出问题的答案,教师就应给予肯定。但教师不必要强求所有的学生都能这样解答或直接告诉学生,还可以有其他的解答方法。只要学生用自己的知识经验,通过分析、想象、思考,合理推理后,能自圆其说,教师就应给予鼓励、肯定和赞扬。