数学《圆柱的表面积》教学设计【推荐6篇】

数学《圆柱的表面积》教学设计 篇一

在教学《圆柱的表面积》这一内容时,我设计了以下教学方案:

一、目标:

1. 知识目标:学生能够理解圆柱的表面积是由底面积和侧面积组成的。

2. 能力目标:学生能够运用所学知识解决实际问题,计算圆柱的表面积。

3. 情感目标:培养学生对数学的兴趣,激发学生的学习热情。

二、教学内容:

1. 圆柱的定义和性质

2. 圆柱的表面积计算公式的推导

3. 圆柱表面积计算的应用

三、教学过程:

1. 导入:通过展示圆柱的实物或图片引起学生的兴趣,导入圆柱的概念。

2. 讲解:讲解圆柱的定义和性质,引导学生理解圆柱的底面积和侧面积的概念。

3. 演示:通过具体的例子演示如何计算圆柱的表面积,引导学生掌握计算方法。

4. 练习:设计一些练习题,让学生在课堂上进行练习,巩固所学知识。

5. 拓展:引导学生应用所学知识解决实际问题,拓展他们的思维。

6. 总结:对本节课的内容进行总结,梳理重点知识,强化记忆。

四、评价:

1. 课堂表现评价:观察学生在课堂上的表现,包括听讲、互动、解题等情况。

2. 作业评价:布置相应的作业,检查学生对知识的掌握情况,及时发现问题。

3. 测验评价:定期进行测验,检验学生对圆柱表面积计算的掌握程度。

通过以上教学设计,我相信学生能够在轻松愉快的氛围中掌握圆柱的表面积计算方法,提高他们的数学学习能力和解决问题的能力。

数学《圆柱的表面积》教学设计 篇二

在教学《圆柱的表面积》这一内容时,我设计了以下教学方案:

一、目标:

1. 知识目标:学生能够掌握圆柱的表面积计算方法,理解表面积的概念。

2. 能力目标:学生能够灵活运用所学知识解决实际问题,提高数学思维能力。

3. 情感目标:培养学生对数学的兴趣,激发学生的学习动力。

二、教学内容:

1. 圆柱的定义和性质

2. 圆柱的表面积计算公式的推导

3. 圆柱表面积计算的应用

三、教学过程:

1. 导入:通过与学生日常生活相关的场景引入圆柱的概念,激发学生的学习兴趣。

2. 讲解:讲解圆柱的定义和性质,引导学生理解表面积的概念和计算方法。

3. 实验:设计一些实验活动,让学生通过实际操作感受圆柱的表面积,加深理解。

4. 练习:设计不同难度的练习题,让学生在课堂上进行练习,巩固所学知识。

5. 讨论:组织学生进行小组讨论,分享不同解题方法和思路,促进学生之间的交流。

6. 总结:对本课内容进行总结,梳理重点知识,引导学生归纳总结。

四、评价:

1. 课堂表现评价:观察学生在课堂上的表现,包括参与度、思维活跃度等情况。

2. 作业评价:布置适量的作业,检查学生对知识的掌握情况,及时发现问题。

3. 考试评价:定期进行考试,检验学生对圆柱表面积计算的掌握情况,及时调整教学方法。

通过以上教学设计,我相信学生能够在积极互动的氛围中掌握圆柱的表面积计算方法,提高他们的数学学习能力和解决问题的能力。愿每个学生都能在这个过程中收获知识的喜悦和成长的快乐。

数学《圆柱的表面积》教学设计 篇三

  教学目标:

  (1)理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱体的侧面积和表面积。

  (2)培养学生观察操作概括的能力以及利用知识合理灵活地分析、解决实际问题地能力。

  教学重点:

  理解和掌握求圆柱表面积的计算方法

  教学难点:

  解答有关圆满柱体实物表面积的实际问题。

  教学关键:

  充分运用多媒体演示,引导学生观察,推导出面积公式。

  教具准备

  学生准备自制圆柱、剪刀。

  教学过程

  一、检查复习,引入新课。

  1.检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2.复习:

  (1)点名说说两底的关系,圆柱的高以及侧面积展开可能是什么图形。

  (2)圆柱的特征是什么?

  (3)答下面问题:

  一个圆形花池,直径是5米,周长是多少?

  长方形的面积怎样计算?

  长方形的面积=长×宽。

  3.引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知

  1.侧面积的意义和计算方法。

  (1)摸一摸自制的圆柱的侧面,谈谈自己感觉到了什么。

  (2)想一想用我们已有的知识,能不能求出这个曲面的面积。

  小组讨论:有什么好办法求出圆柱的侧面积吗?

  (3)剪一剪自制的圆柱汇报交流结果。

  (4)说一说:圆柱的侧面可转化为已学过的平面图形,它的侧面积正好等于底面周长与高的乘积。

  板书:圆柱的侧面积=底面周长×高

  (5)算一算:选出下图中给出的数据,求出侧面积。(单位:厘米)

  小组汇报结果:可能出现的计算方法有

  方法一:25.12×20=502.4(平方厘米)

  方法二:3.14×8×20=502.4(平方厘米)

  方法三:3.14×(2×4)×20=502.4(平方厘米)

  小结:计算圆柱的侧面积,要根据所给的已知条件灵活计算。

  (6)小组合作,量一量自制圆柱的有关数据,求出它的侧面积,并反馈。

  (7)完成教科书例1及34页“做一做”的第1题。

  2.表面积的意义及计算方法。

  (1)自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  (2)出示例2(课件显示例2)(单位:厘米)

  小组讨论:根据所给数据,可以求出那些面积?学生可能得出以下几种结果。

  a、侧面积:2×3.14×5×15=471(平方厘米)

  b、2个底面积:2×3.14×5×5=157(平方厘米)

  c、表面积:471+157=628(平方厘米)

  (3)小结;圆柱的侧面积等于底面周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但是在实际生活中,有许多问题要根据实际情况,合理灵活地求出圆柱地表面积。

  三、巩固练习,灵活运用。

  1、自学课本,教科书第34页例3。

  (1)自读后分小组讨论:求圆柱形水桶所需铁皮地多少,是水桶哪几个面地面积?为什么?什么叫“进一法”为什么1821.2平方厘米≈1900平方厘米呢?

  (2)学生反馈:

  a.水桶是无盖的,所以求铁皮的面积就是求侧面积和一个底面的面积。

  b.在实际生活中,使用材料要比计划得到得结果要多一些,因此要保留整平方厘米,都要向前一位进1,这种方法叫进一法,所以1821.2平方厘米≈1900平方厘米。

  2、要知道下利物体的用料面积,要求那些面的总面积?(课件显示)

  铁皮制成的糖盒 纸杯 塑料水管

  3、只列式不计算。(课件显示)

  用铁皮制成圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?

  4、实践练习。

  (1)小组合作:测量并计算自制圆柱形事物的用料面积。

  (2)要计算制做这个圆柱形物体的用料面积,求哪些面的面积?需要知道哪些数据?怎样测量这些数据?

  (3)测量:测量所需的数据。(取整厘米数)

  (4)计算:根据量得的数据,列出算式并计算结果。

  四、布置作业

  教科书练习七的第2~5题

  板书设计

  圆柱的表面积

  两个底面积底面是个圆s=丌rr

  表面积

  一个侧面积侧面是个长方形s=ab

数学《圆柱的表面积》教学设计 篇四

  一、引入新课:

  昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?

  生:圆柱是由平面和曲面围成的立体图形。

  生:我还知道圆柱各部分的名称……

  生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  演示这一过程

  师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)

  师:你还想知道什么呢?

  生:还想知道怎么求它的表面积

  师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)

  二、探究新知

  师:过去我们学过正方体、长方体的表面积,出示一个长方体,谁来摸一摸这个长方体的表面积?

  指名学生摸其表面积,并追问:怎样求它的表面积?

  生:六个面的面积和就是它的表面积

  师:怎样求圆柱的表面积呢?(学生分组讨论)

  学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)

  1、圆柱的侧面积

  师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)

  小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。

  师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。

  展示其变化过程。

  师生小结:(教师板书)侧面积=底面周长×高

  呈现例一:一个圆柱,底面直径是0.4米,高是1.8米,求它的侧面积。

  (1)学生独立解答

  (2)指明学生解答,并让其讲清自己的解题思路。

  师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?

  生:底面周长和高

  师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。

  2、圆柱的表面积

  师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)

  教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)

  指名学生说解题思路,

  师:这说明要计算圆柱的表面积需要抓出哪两个量?

  生:底面积和侧面积

  师生小结:圆柱的表面积=底面积×2﹢侧面积

  3、反馈练习:(略)

  师:想一想,应该先求什么?再求什么?请大家动手试一试。

  4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)

  三、全课小结:

  这节课你有什么收获?

  你有没有想提醒同学们注意的地方?

  生:要注意单位,还要注意所要求得圆柱有几个底面。

  四、自我评价

  你认为自己这节课的表现如何?

数学《圆柱的表面积》教学设计 篇五

  教学过程

  (一)复习导入,探求新知

  用课件展示复习内容:

  (1)我们学过的圆的周长是怎么计算的?面积呢?

  (2)长方形的面积呢?

  (3)圆柱有哪些特征?

  (二)设下悬念,导入课题

  由学过的长方体表面积的计算方法,设下悬念“要是这些面是曲面呢?表面积又要怎么求呢?”,激发学生的求知欲,带着问题进入本节课题。

  (三)动手操作,发现规律

  引导学生用一张纸做一个简单的圆柱模型,然后引导他们发现圆柱的特征,发现规律,例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点s圆柱=s侧面积+2×s底面积=c×h+2×πr2=2πr×h+2×πr2。

  (四)例题解剖,引导学习

  1、一顶厨师帽,高是30cm,帽顶直径20cm,做这样一顶帽子至少需要多少面料?

  解:(1)帽子的侧面积:s侧面积=2×3.14×20×30=3768(cm2)

  (2)帽顶的面积:s底面积=3.14×20×20=1256(cm2)

  (3)需要用面料:s侧面积+s底面积=3768+1256=5024(cm2)

  答:

  (五)巩固练习,知识拓展

  做一做:

  1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?

  解:(1)s侧面积=2×3.14×2×5=62.8(dm2)

  (2)s底面积=3.14×2×2=12.56(dm2)

  (3)s圆柱=s侧面积+2×s底面积=62.8+2×12.56=87.92(dm2)

  2、一个圆柱表面积是6π,底面半径是2,则圆柱的高是多少?

  解:设圆柱的高为h,由s圆柱=s侧面积+2×s底面积=2πr×h+2×πr×r知,6π=2π×1×h+2×π×1×1,解得h=2

  (六)反思小结,加强记忆

  让学生自主总结“本节课学习了什么?”

  1.这堂课的主要内容是什么?

  2.求圆柱表面积的公式是什么?

  3.如何运用公式求解实际问题。

  这堂课我们学习了圆柱的表面积计算的基本思路及方法。在估算圆柱表面积时发现了圆柱的表面积公式。在今天的学习中,我们还要逐步深入、领会、掌握“转化”这一数学思想方法。

  (七)设置问题,带出课堂

  16页第6题的第1小题,第7题和第14题。

  教学目标

  1、认识圆柱,掌握它的基本特征,认识圆柱的底面,侧面和高。

  2、通过制作圆柱模型,探索并掌握圆柱的侧面积和表面积的计算,并运用到实际问题中。

  3、通过探究、观察等活动,了解平面图形与立体图形之间的联系,发展学生的空间观察。

  教学的重、难点及教学关键

  (一)教学重点:探索圆柱侧面积和表面积的计算,并能运用到实际问题中。

  (二)教学难点:理解圆柱侧面展开图与圆柱的各部分之间的联系,并推导出圆柱侧面积和表面积的计算公式。

  (三)教学关键:利用教具,学具进行实验活动,引导学生观察、思考、经历计算公式的推导过程。

数学《圆柱的表面积》教学设计 篇六

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

  (二)核心能力

  运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

  (三)学习目标

  1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

  2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

  3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

  (四)学习重点

  圆柱表面积的计算

  (五)学习难点

  圆柱体侧面积计算方法的推导

  (六)配套资源

  实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

  二、学习设计

  (一)课前设计

  自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

  【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

  (二)课堂设计

  1.创设情境,引入新课

  师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

  师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

  今天我们就来一起研究圆柱的表面积。(板书课题)

  2.探究新知

  (1)认识表面积

  ①回忆旧知

  师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

  学生上台演示。

  小结:六个面的面积总和是长方体的表面积。

  师:正方体呢?

  学生自由发言。

  ②迁移类推新知

  师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

  学生操作后,自主发言。

  根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

  【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

  (2)探求表面积计算方法

  ①自主探索

  师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的平面图形?

  学生自由发言,

  师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

  以小组为单位进行操作活动。

  ②交流汇报

  各小组展示汇报,引导学生互相评价。

  预设1:沿高剪开

  预设2:沿斜线剪开

  预设3:随意剪开或撕开

  引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

  ③用字母表示

  师:怎么用字母表示呢?

  直接计算:S=Ch

  利用直径计算:S=πdh

  利用半径计算:S=2πrh

  ④归纳小结

  师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

  S表=S侧+2S底

  师:要求圆柱的表面积需要知道哪些条件?

  练一练:

  第21页的做一做。

  一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

  学生独立完成后汇报。

  师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

  引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

  【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】

  (3)举一反三,灵活应用

  出示例4:

  一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少平方厘米的面料?(得数保留整十数。)

  ①理解题意

  师:求多少面料就是求什么?

  师:“没有底”的帽子如果展开,它由哪几部分组成?

  小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

  ②独立完成

  学生独立完成后交流汇报。

  ③归纳小结

  师:通过计算这道题目,你有什么收获?

  引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

  【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】

  3.巩固练习

  (1)求下面圆柱的侧面积。

  ①底面周长是1.6m,高是0.7m。

  ②底面半径是3.2dm,高是5dm。

  (2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?

  4.课堂总结

  师:回顾本节的学习,你们有什么收获?

  引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。

  (三)课时作业

  1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。

  (1)测量的数据

  (2)计算过程及结果

相关文章

音乐《尼罗河畔的歌声》教学反思

三尺讲台是我儿时的一个梦想,而现在站在这,我就要做好一名人民教师。开学已有一段时间了,当刚接手五、六年级时,我的内心不免有点担心。于是我利用以前积累的经验,想出了提前预备的方案,而这些方案确实在我的教...
教学资料2017-07-05
音乐《尼罗河畔的歌声》教学反思

《挫折面前也从容》教学反思【通用3篇】

《挫折面前也从容》这一课的内容与学生生活、学习联系比较紧密,学生在生活中都有一些初步的有关挫折的生活阅历,依据教学要从学生经验和知识的水平出发的教学规律,我充分利用学生已有的经验和知识,突出时代特征,...
教学资料2018-06-06
《挫折面前也从容》教学反思【通用3篇】

正弦定理概念教学设计【优秀3篇】

正弦定理是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”。小编与大家分享正弦定理的教学设计,欢迎参考!一、教学内容分析本节内容安排在《普通高...
教学资料2019-03-03
正弦定理概念教学设计【优秀3篇】

《火烧云》教学反思(精简6篇)

痘鹕赵啤氛馄挝拿栊戳讼绱宓陌硖炜罩谐鱿只鹕赵频那榫埃骷蚁艉煊萌惹楹ǔ┑谋誓蜗蟮孛栊闯隽嘶鹕赵频难だ龆嘧耍旅娓蠹曳窒怼痘鹕赵啤返慕萄Х此迹黄鹄纯纯窗桑   痘鹕赵啤方萄Х此...
教学资料2018-03-03
《火烧云》教学反思(精简6篇)

六年级体育与健康教学计划(精简6篇)

时间一晃而过,新的机遇和挑战向我们走来,让我们一起来学习写教学计划吧。你知道领导想要看到的是什么样的教学总结吗?下面是小编精心整理的六年级体育与健康教学计划范文,欢迎大家借鉴与参考,希望对大家有所帮助...
教学资料2014-01-06
六年级体育与健康教学计划(精简6篇)

教育类文章:Saturday Smartoons(实用3篇)

A superhero blood cell stars in a clever TV hit Sal Monella is a poisonous gangster hell bent on in...
教学资料2018-09-06
教育类文章:Saturday Smartoons(实用3篇)