科学计数法教学设计【最新3篇】
科学计数法教学设计 篇一
在教学科学计数法时,我们需要设计一些具有趣味性和有效性的教学活动,以帮助学生更好地理解和掌握这一概念。以下是我设计的一堂科学计数法教学课程:
一、导入
为了激发学生的学习兴趣,我会选择一个有趣的实例来引入科学计数法的概念。可以是天文学中的星星数量、微生物的数量或者是人口数量等。通过引入实际生活中的例子,让学生能够直观地感受到科学计数法的重要性和应用场景。
二、概念讲解
在引入之后,我会简要介绍科学计数法的定义和用途,让学生了解科学计数法是一种简化表示大量数字的方法,以及在科学领域中的广泛应用。同时,我会结合实际例子,让学生能够更好地理解科学计数法的意义和优势。
三、案例分析
接着,我会设计一些案例让学生进行分组讨论和解答。通过让学生运用科学计数法来解决实际问题,提高他们的实际运用能力和逻辑思维能力。案例可以是一些真实的数据统计,让学生用科学计数法来表示和计算。
四、游戏互动
为了增加趣味性和活跃课堂氛围,我会设计一些小游戏来让学生巩固所学知识。比如,设计一个快速计算科学计数法的游戏,让学生在竞争中加深对科学计数法的认识和理解。
五、总结反馈
最后,我会对本节课的内容进行总结,并邀请学生提出问题和建议。通过及时的反馈和总结,可以帮助学生更好地消化所学知识,并对科学计数法有一个更清晰的认识。
通过以上设计,我相信学生们能够在轻松愉快的氛围中,更好地理解和掌握科学计数法的知识,提高他们的数学思维能力和实际运用能力。
科学计数法教学设计 篇二
科学计数法是数学中非常重要的概念之一,对于学生来说,掌握科学计数法不仅可以提高他们的计算效率,还可以引导他们更好地理解数学规律和推理能力。以下是我设计的另一堂科学计数法教学课程:
一、实验引入
为了让学生更加直观地感受科学计数法的重要性,我会设计一个实验来引入这一概念。比如,通过实验测量一个物体的质量,然后通过科学计数法来表示和计算。通过实验,让学生能够亲自体验科学计数法的应用和优势。
二、基础概念讲解
在实验引入之后,我会简要讲解科学计数法的基本概念和规则,让学生了解科学计数法是如何简化大数字的表示和计算。同时,我会结合一些实际例子,让学生更好地理解科学计数法的实际应用和意义。
三、练习巩固
接着,我会设计一些练习题目,让学生进行个人或小组练习。通过练习,让学生能够运用科学计数法来解决实际问题,巩固所学知识。同时,我会提供及时的指导和帮助,让学生能够更好地理解和掌握科学计数法的应用。
四、实践应用
为了让学生更好地理解科学计数法的实际应用,我会设计一些实际场景的问题,让学生运用科学计数法来解决。通过实践应用,让学生能够将所学知识运用到实际生活中,提高他们的计算能力和逻辑思维能力。
五、讨论交流
最后,我会组织学生进行讨论和交流,让他们分享彼此的学习体会和心得。通过互相交流,可以帮助学生更好地理解科学计数法的概念和应用,提高他们的学习动力和兴趣。
通过以上设计,我相信学生们能够在实践中更好地理解和掌握科学计数法的知识,提高他们的数学思维能力和实际应用能力。希望这样的教学设计能够为学生带来更多的启发和收获。
科学计数法教学设计 篇三
科学计数法教学设计
作为一位优秀的人民教师,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。写教学设计需要注意哪些格式呢?下面是小编整理的科学计数法教学设计,欢迎阅读与收藏。
知识目标
1、能了解科学记数法的意义
2、能掌握用科学记数法表示比较大的数
一、能力目标:
1、借助身边所熟悉的事物进一步体会、感受生活中的大数,增强数感,积累数学经验。
2、会用简便的方法——科学记数法表示大数
情感与价值观:培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流学习方法,并从中产生对数学的兴趣和战胜困难的勇气。
二、教学重点与难点
重点:掌握用科学记数法表示大数。
难点:正确掌握10n的特征,探索归纳出科学记数法中指数与整数位之间的关系。
三、教学方法:
自主交流——探索的方法。
四、教学过程:
1、提出问题
师:上节课我们借助于生活中熟悉的事物认识了100万有多大,下面请同学们拿出练习本书写下面的数据:(用阿拉伯数字)
(1)第五次人口普查时,中国人口约为1300000000人
(2)太阳半径约为696000000米
(3)地球离太阳约为150000000千米
(4)光的速度约为300000000米/秒
师:你想到了什么?
(生:这些数太大了,不好记。比100万都大。这些数据读和写都比较困难…)
师:这节课我们就来研究书写这些较大数据的科学的方法,(引出课题)
师:现在我们不知道怎样写这些数简便,那我们寻求一下计算器的帮助。计算器就算是容纳的数字再多,也得有个极限是吧?平时我们用的计算器最多能容纳多少位?
生:8位或10位
师:当计算器计算到大于8位或10位的数时,它是怎么显示的?你们试试看,你是怎样操作的?(学生自己操作,汇报结果。老师写出最后形式,讲评后,举出课本上小明用计算器表示大数的方法。最后计算器显示出1×的形式。这一部分用课件展示)
师:1×是小明通过怎样的运算得到的呢?
(生:可能回答是1000经过两次平方得到的。师:实际上就是1000的几次方?生:1000的4次方。那么1×应该表示什么数?生:1000即1000000000000)
师:计算器显示屏上的“12”表示什么意思呢?
生:表示10的指数
师:这里出现了指数的概念,我们曾经在‥哪一部分学到了指数?
生:乘方运算
师:先来回顾一下什么是乘方。
生:求几个相同因数的积的运算(回答不出具体概念可以举例说明,老师再总结)
师:下面我们再来回顾一下10的n次幂的规律和意义:课件展示
10=10
100=10×10=10(10的2次幂等于1后面带2个0)
1000=10×10×10=10(10的`3次幂等于1后面带3个0
10000=10×10×10×10=10(10的4次幂等于1后面带4个0)
‥‥‥‥‥
1000…000=。=10(10的n次幂等于1后面带n个0)
师:你能发现什么规律?10的指数和0的个数有什么关系?
生:容易发现指数的大小就是0的个数。
规律一:幂指数等于零的个数
师:再观察幂指数与整数的数位有什么关系
生:幂指数比整数的数位小1
规律二:幂的指数比整数的数位少1
师:我们用10的n次幂的形式表示出了像这样1后面有很多0的形式的大数,那么,我们怎么来表示一般的大数呢?投影一些大数的图片,问刚才投影的图片中的大数能这样表示吗?是怎样表示的?有什么规律?:课件展示
300000000=3×100000000=3×108
150000000=1.5×100000000=1.5×10
696000=6.96×100000=6.96×105
学生可讨论后回答,有一定的难度,老师可以给与一定的启示。培养学生归纳叙述的能力。(观察n与位数的关系。还可能出现有学生质疑可不可以表示成300000000=30×10。老师答:可以,但为了统一标准,规定了前面一个因数的范围)
师:像上面那样表示大数的方法,我们叫科学记数法:课件展示:
一般地,一个大于10的数可以表示成a×10的形式,其中1<10,n是正整数,这种记数方法叫做科学记数法(其中n的值是比原数的整数位数少1的数)
师:下面我们就用科学记数法表示表示下列各数:课件展示
例1、用科学记数法表示下列各数:
(1)1000000;(2)574000000;(3)80700000;
(5)30030;(6)127.43、
解:
(1)1000000=106;
(2)574000000=5.74×108;
(3)80700000=8.07×107;
(5)30030=3.003×104;
(6)127.43=1.2743×102、
例题2、3、4
5、下列用科学记数法记出的数,原来的数各是什么数?
(1)8.5×106;(2)7.04×105;(3)3.96×104;
课标剖析(教材全解333页)
课后调查,课件展示:
课本201页的做一做,分小组调查。
读一读:课本202页的读一读,并会用科学记数法表示它们。
小结
师:这节课你都掌握了那些本领呢?
(学生自由发言,最后强调a的取值范围,n的值的确定)