简易方程教学设计(通用6篇)
简易方程教学设计 篇一
在教学简易方程时,为了让学生更好地理解和掌握知识,设计一个生动有趣的教学活动是非常重要的。下面我将分享一个简易方程教学设计,希望能够给各位老师一些启发和帮助。
首先,我们可以设计一个名为“方程拼图”的活动。在这个活动中,我们可以准备一些卡片,上面分别写有简易方程中的各个元素,比如变量、常数、运算符号等。然后将这些卡片混合在一起,要求学生根据给定的方程将这些卡片拼凑在一起,完成方程的拼图。通过这个活动,学生不仅能够加深对方程结构的理解,还能够培养他们的逻辑思维能力。
其次,我们可以设计一个名为“方程解密”的游戏。在这个游戏中,我们可以准备一些编码表,将简易方程中的元素进行编码。然后让学生根据编码表解密,找出方程的真正含义。通过这个游戏,学生不仅可以巩固对方程的理解,还能够培养他们的解密能力和耐心。
最后,我们可以设计一个名为“方程竞赛”的环节。在这个竞赛中,我们可以将学生分成若干小组,让他们在规定的时间内解出尽可能多的简易方程。通过这个竞赛,不仅可以激发学生的学习兴趣,还可以培养他们的团队合作精神和应变能力。
通过以上设计的教学活动,相信学生们会在愉快的氛围中更好地掌握简易方程的相关知识,提高他们的学习效果和学习兴趣。
简易方程教学设计 篇二
简易方程是初中数学中的基础知识,对于学生来说往往是一项难点。在教学简易方程时,我们应该注重培养学生的逻辑思维能力和解决问题的能力。下面我将分享一个简易方程教学设计,希望能够给广大教师一些启发和帮助。
首先,我们可以设计一个名为“方程填空”的活动。在这个活动中,我们可以准备一些简易方程的题目,要求学生填写方程中缺失的元素。通过这个活动,学生不仅能够巩固对方程结构的理解,还能够培养他们的逻辑思维能力和解决问题的能力。
其次,我们可以设计一个名为“方程抢答”的环节。在这个环节中,我们可以给学生出示一个简易方程,要求他们尽快抢答出方程的解。通过这个环节,可以激发学生的学习兴趣,培养他们的应变能力和解决问题的能力。
最后,我们可以设计一个名为“方程实验”的活动。在这个活动中,我们可以让学生通过实际操作,利用天平、积木等工具来解决简易方程。通过这个活动,学生不仅可以直观地感受到方程的解法,还可以培养他们的实践能力和探究精神。
通过以上设计的教学活动,相信学生们会在轻松愉快的氛围中更好地掌握简易方程的相关知识,提高他们的学习效果和学习兴趣。愿我们的教学活动能够为学生的数学学习之路增添一份色彩和乐趣。
简易方程教学设计 篇三
1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
2、培养学生的分析能力应用所学知识解决实际问题的能力。
3、帮助学生养成自觉检验的良好习惯。
重点、难点:理解并掌握解方程的方法。
教具准备:多媒体课件
教学过程:
一、 复习铺垫
1、方程的意义
师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?
生:含有未知数的等式叫方程。
2、判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73 (2)4x<36+17 (3)234÷a>12
(4)72=x+16 (5)x+85 (6)25÷y=0.6
生:(1)(4)(6)是方程。
师:你为什么说这三个是方程呢?
生:因为它含有未知数,而且是等式。
二、探究新知
(一)理解方程的解和解方程
1、看图写方程
师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?
生:我知道杯子重100克,水重X克,合起来是250克。
师:你能根据这幅图列出方程吗?
生:100+X=250.
2、求方程中的未知数
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)
生1:根据加减法之间的关系250-100=150,所以X=150.
生2:根据数的组成100+150=250,所以X=150.
生3:100+X=250=100+150,所以X=150.
生4:假如在方程左右两边同时减去100,那么也可得出X=150.
3、验证方程中的未知数,引出方程的解和解方程两个概念。
师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?
生:对,因为X=150时方程左边和右边相等。
师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?
学生自学后汇报。(板书)齐读两个概念。
4、 辨析方程的解和解方程两个概念
师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?
生:要看这个数能不能使方程左右两边相等。
师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。
5、巩固练习,加深理解。
师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)
生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。
生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。
(二)解简易方程
1、复习等式的性质
师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?
(1)如果5+3=8,那么5+3-3=8( )
(2)如果50-13=37,那么50-13+13=50( )
(3)如果a - 7=8,那么a - 7 + 7=8( )
(4)如果X+9=45,那么X+ 9-9=45( )
师:你是根据什么填空的?
生:等式的性质。
师:等式有什么性质呢?我们齐来说一遍。
2、理解方程与等式的联系,引出课题。
师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)
3、出示例1图,列出方程。
师:图上画的是什么?你能列出方程吗?
简易方程教学设计 篇四
教学内容:
教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。
教学目的:
使学生理解和初步学会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。
教学重点:
会ax±b = c这一类简易方程的解法,认识解方程的`意义和特点。
教学难点:
看图列方程,解答多步方程。
教具准备:
电教平台。
教学过程:
一、导入
1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。
二、新课
1.教学例2。
出示小老鼠的问题:
出示例2。先让学生自己读题,理解题意。
教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?
学生:含有未知数的等式叫做方程。
教师:那么,要列方程就是要列出什么样的式子呢?
学生:列出含有未知数的等式。
教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?
学生:3x+4 = 40。
教师:很好!谁能再说说这个方程表示的数量关系?
学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。
教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4 = 40,可以怎么想?根据什么解?
学生:可以把原方程看作是“加数+加数 = 和”的运算,因此,根据“加数 = 和-另一个加数”来解。
这样也可以根据“加数 = 和-另一个加数”来解。得出3x = 40-4,再得出3x = 36。
教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。
教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数 = 和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。
2.教学例3。
小猫提出的问题:
教师出示:解方程18-2x = 5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。
教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数 = 被减数-差”得出2x = 18-5,2x = 13,x = 6.5。)
教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x = 5。
教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?
学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x = 5的等号左边只有一步运算,而6×3-2x = 5的等号左边有两步运算。
教师:6×3-2x = 5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x = 5就变成了18-2x = 5。所以,解方程6×3-2x = 5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x = 5解出来。
让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。
教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。
3.课堂练习。
做教科书第109页下面“做一做”中的题目。
先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。
三、巩固练习(小兔子提出的问题)。
1.做练习二十七的第1题第一行的两小题。
先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。
2.做练习二十七的第2题。
教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。
3.做练习二十七的第4题。
让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)
让学生独立做在练习本上,做完以后,集体订正。
四、小结。
出示课题:解简易方程。
简易方程教学设计 篇五
教学内容:
数学书P59及“做一做”,练习十一第5-7题。
教学目标:
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。
教学重难点:
掌握解方程的方法。
教学过程:
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
(一)教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3
化简,即得: x=6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3
=6+3
=9
=方程右边
所以, x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三)反馈练习
1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:x-2.4=6 x÷9=0.7(强调验算)
(四)课堂作业:“做一做”第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
简易方程教学设计 篇六
目标预设:
1.使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。
2.培养学生的分析比较能力和再创造意识。
3.培养学生认真审题,自觉检验的良好学习习惯。
过程预设:
一、情境创设
六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。
商品上标价分别为(字母表示的为商品价格不知道的):
上衣 65元 巧克力 y元
钢笔 40元 皮鞋 60元
书 x元 文具盒 20元
如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?
(三种情况,大于、小于、等于)
如果请你自己购物的话,你准备选择什么
把你的购买情况与用钱结果用式子表示出来。纯茨隳苄炊嗌伲?BR>选取生列出的算式: 65+40=100 65+x<100 y+60 x+y等等
二、观察讨论:把上面的式子分类,你认为可以怎么分?
1.小组讨论,介绍如何分。
2.教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。
3.今天我们就来研究方程。(板书课题)
4.提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。
知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。
5.汇报:说说你写的方程是怎样的?
提问:如65+x是方程吗?为什么?
由此看出:具备方程的两个条件是什么?
师:65+x=100、65+58=123都是等式,一个是方程,一个不是方程,方程和等式之间有什么关系?
可以用一句话或者图来表示吗?
三、方程史话
说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。
《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。
听了这段话,你有什么感想?
四、解方程
1.师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?
生练习求未知数,指名板演。(两题)
师讲解:这是我们学过的求未知数x,当x=?时这个方程两边才相等,所以我们把x=?就叫做是这个方程的解。提问:另一道方程的解是多少?
刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。
其实我们以前求未知数x的过程,实际上就是在解方程。
2.选出方程的解,并画上横线。
X+8=30 (x=38 x=22)
X=5是方程( )的解。15x=3 6x=30
12-x=8 (x=4 x=20)
提问:你是怎样找出方程的解的?
3.检验
师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。
请大家把书翻到80页,看一下方程的检验过程。
需要注意的是检验的格式,自己任意挑选一题进行检验。
五、巩固练习
做个游戏,好吗?
1.分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。
2.求出最好这组中的两道方程中的解,并检验。