勾股定理练习题4[1]
勾股定理练习题4[1]
探索勾股定理测试卷
(满分:100分 时间:45分钟) 选择题(每题6分)
1、等腰三角形底边上的高为8,周长为32,则三角形的面积为______________ A 56 B 48 C 40 D 321
2
2、如果Rt△的两直角边长分别为n-1,2n(n>1),那么它的斜边长是____________
22
A 2n B n+1 C n-1 D n+1 3、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为________
2222
A 6cm B 8cm C 10cm D 12cm F
4、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距
_________ 东
A 25海里 B 30海里 C 35海里 D 40海里填空题(每题6分)
5、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________
6、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的
2
正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm。
222
7、已知x、y为正数,且│x-4│+(y-3)=0,如果以x、y的长为直角边作一个
直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为___________。 8、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A
处。另一只爬到树的距离相等,则这棵树高____________米。顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过
A
三、解答题(每题13分)
2
9、小明的叔叔家承包了一个矩形鱼池,已知其面积为48m,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?
10、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且
D ∠A=90°,求四边形ABCD的面积。
11、太阳刚刚从地平线升起,巴河姆就在草原上大步朝东方走去,他走了足足有10俄里才左拐弯,接着又走了许久许久,再向左拐弯,这样又走了2俄里,这时,他发现天色不早了,而自己离出发点还足足有17俄里,于是改变方向,拼命朝出发点跑去,在日落前赶回了出发点。这是俄罗斯大作家托尔斯泰在作品《一个人需要很多土地吗》中写的故事的一部分。你能算出巴河姆这一天共走了多少路?走过的路所围成的土地面积有多大吗?
12、如图1,是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c;如图2是以c为直角变的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形。 画出拼成的这个图形的示意图,写出它的名称; 用这个图形证明勾股定理;
设图1中的直角三角形由若干个,你能运用图1中所给的直角三角形拼出另外一种能证明勾股定理的图形吗?请画出拼成后的示意图。(无需证明)
图2
探索勾股定理(二)
1.填空题
(1)某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米. (2)有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距海里.
(3)如图1:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向 成直角的BC方向上任取一点C,若测得CA=50m,CB=40m,那么A、B两点间的距离是_________.
2.已知一个等腰三角形的底边和腰的长分别为12cm和10cm,求这个三角形的面积.
3.在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm
(1)求这个三角形的斜边AB的长和斜边上的高CD的长.
(2)求斜边被分成的两部分AD和BD的长.
4.如图2,要修建一个育苗棚,棚高h=1.8m,棚宽a=2.4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要
多少平方米塑料薄膜?
5.如图3,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.
勾股定理练习题:练习一:(基础)
等腰三角形的腰长为13,底边长为10,则顶角的平分线为___.
一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.
3.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2
)=0,则它的形状为( ) A.直角三角形 B.等腰三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
4.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(? 取3)是().
(A)20cm (B)10cm (C)14cm (D)无法确定
在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2
=_____.
6. R t △ 一 直 角边的长为11,另两边为自然数,则Rt△的周长为( ) A、121 B、120 C、132 D、不能确定
7.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上答案都不对 C
8.如果Rt△的两直角边长分别为n2
-1,2n(n >1),那么它的斜边长是( )
A
A、2n B、n+1 C、n2-1 D、n2
+1 9.在△ABC中,?C?90?,若a?b?7,△ABC的面积等于6,则边长c= 10.如图△ABC中,?ACB?90?,AC?12,BC?5,AN?AC,BM?BC则MN=
11.一个直角三角形的三边长的平方和为200,则斜边长为 10
12.若△ABC是直角三角形,两直角边都是6,在三角形斜边上有一点P,到两直角边的.距离相等,则这个距离等于 六根二
13.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
小河
17km
14、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿∠CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
3cm
E
A
15.校园里有一块三角形空地,现准备在这块空地上种植草皮以美化环境,已经测量出它的三边长分别是13、14、15米,若这种草皮每平方米售价120元,则购买这种草皮至少需要支出多少?
16、如图,在△ABC中,∠B=90,AB=BC=6,把△ABC进行折叠,使点A与点D重合,BD:DC=1:2,折痕为EF,点E在AB上,点F在AC上,求EC的长。
提高题:
?
B
D
C
1、※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( ) (A
2d (B
d (C
)2d (D
)d
2.在?ABC中,AB?AC?1,BC边上有2006个不同的点P1,P2,?P2006,
记m2i?APi?BPi?PCi?i?1
,2,?2006?,则m1?m2??m2006=_____. 解:如图,作AD?BC于D,因为AB?AC?1,则BD?CD. 由勾股定理,得AB2?AD2?BD2,AP2?AD2?PD2.所以
AB2?AP2?BD2?PD2
??BD?PD??BD?PD??BP?PC
所以AP2
?BP?PC?AB2
?12
.
因此m21?m2??m2006?1?2006?2006.
3※.如图所示,在Rt?ABC中,?BAC?90?,AC?AB,?DAE?45?,且BD?3,
CE?4,求DE的长
.
解:如右图:因为?ABC为等腰直角三角形,所以?ABD??C?45?. 所以把?AEC绕点A旋转到?AFB,则?AFB??AEC. 所以BF?EC?4,AF?AE,?ABF??C?45?.连结DF. 所以?DBF为直角三角形.
由勾股定理,得DF2
=
BF2
+BD2
=42
+32
=52
.所以DF=5. 因为?DAE45 ,所以?DAF?DAB?EAC45 .
所以DADE@DADFSAS. 所以DE=DF=5.
4、如图,在△ABC中,AB=AC=6,P为BC上任意一点,请用学过的知识试求PC·PA+PA2
的值。
5、※如图在Rt△ABC中,?C?90?,AC?4,BC?3,在Rt△ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。如图所示:
要求:在两个备用图中分别画出两种与示例图不同的拼接方法,在图中标明拼接的直角三角形的三边长(请同学们先用铅笔画出草图,确定后再用0.5mn的黑色签字笔画出正确的图形)
解:要在Rt△ABC 的外部接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定。要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识。下图中的四种拼接方法供参考。
答案: 选择题
1、B 2、 D 3、A 4、D 填空题
5、① 13 ② 20 ③ 11 ④ 24 ; 6、49 ; 7、 5 ; 8、 25 解答题 9、28m
10、解:连接BD
??A?90??BD?AB2?AD2?5
又 ?5,12,13是一组勾股数,??BCD是直角三角形
11
?S四边形ABCD??3?4??5?12?36
22
11、根据题意画出图形,已知AE=10,DC=EB=2,AD=17
?Rt?AED?ED?AD2?AE2?15?周长为:10?15?2?17?44(俄里)
1
2
2?10)?15?90(平方俄里)
12、(1)直角梯形
(2) 根据面积相等可
a?b)(a?b)?ab?2?1c2 化简得:a2
?b2
?c2
222
(3)
1.(1)2.5 (2)30 (3)30米 2.如图:等边△ABC中BC=12cm,AB=AC=10cm
作AD⊥BC,垂足为D,则D为BC中点,BD=CD=6 cm
在Rt△ABD中,AD2=AB2-BD2=102-62
=64 ∴AD=8cm ∴S1△2BC·AD=12
×12×8=48(cm2
ABD=
) 3.解:(1)∵△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm
∴AB2
=AC2
+BC2
=2.12
+2.82
=12.25
∴AB=3.5cm
得:
∵S△ABC=
11
AC·BC=AB·CD 22
∴AC·BC=AB·CD ∴CD=
AC?BC2.1?2.8
==1.68(cm) AB3.5
(2)在Rt△ACD中,由勾股定理得: 222AD+CD=AC
22222
∴AD=AC-CD=2.1-1.68 =(2.1+1.68)(2.1-1.68) =3.78×0.42=2×1.89×2×0.21 2
=2×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm)
∴BD=AB-AD=3.5-1.26=2.24(cm)
2
4.解:在直角三角形中,由勾股定理可得:直角三角形的斜边长为3m,所以矩形塑料薄膜的面积是:3×12=36(m) 5.解:根据题意得:Rt△ADE≌Rt△AEF ∴∠AFE=90°,AF=10cm,EF=DE 设CE=x cm,则DE=EF=CD-CE=8-x 在Rt△ABF中由勾股定理得: 222222
AB+BF=AF,即8+BF=10, ∴BF=6 cm
∴CF=BC-BF=10-6=4(cm) 在Rt△ECF中由勾股定理可得: 222222EF=CE+CF,即(8-x)=x+4
22
∴64-16x+x=x+16 ∴x=3(cm),即CE=3cm