红巨星
红巨星
红巨星
红巨星(红巨星)
当一颗恒星度过它漫长的青壮年期——主序星阶段,步入老年期时,它将首先变为一颗红巨星。称它为“巨星”,红巨星是恒星燃烧到后期所经历的一个较短的不稳定阶段,根据恒星质量的不同,历时只有数百万年不等,这是恒星几十亿年甚至上百亿年的稳定期相比是非常短暂的。红巨星时期的恒星表面温度相对很低,但极为明亮,因为它们的体积非常巨大。在赫罗图上,红巨星是巨大的非主序星,光谱属于K或M型。所以被称为红巨星是因为看起来的颜色是红的,体积又很巨大的缘故。金牛座的毕宿五和牧夫座的大角星以及猎户座的参宿四都是红巨星。
目录 简介 分类特征 演化 如何定义 收缩展开 简介当一颗恒星度过它漫长的青壮年期——主序星(main sequence)阶段,步入老年期时,它将首先变为一颗红巨星。 称它为“巨星”,是突出它的体积巨大。在巨星阶段,恒星的体积将膨胀到十亿倍之多。 称它为“红”巨星,是因为在这恒星迅速膨胀的同时,它的外表面离中心越来越远,所以温度将随之而降低,发出的光也就越来越偏红。不过,虽然温度降低了一些,可红巨星的体积是如此之大,它的光度也变得很大,极为明亮。肉眼看到的最亮的星中,许多都是红巨星。 在赫罗图( Hertzsprung-Russell diagram)中, 红巨星分布在主星序区的右上方的一个相当密集的区域内,差不多呈水平走向。 恒星依靠其内部的热核聚变而熊熊燃烧着。核聚变的结果,是把每四个氢原子核结合成一个氦原子核,并释放出大量的原子能,形成辐射压。处于主星序阶段的恒星,核聚变主要在它的中心(核心)部分发生。辐射压与它自身收缩的引力相平衡。 氢的燃烧消耗极快,中心形成氦核并且不断增大。随着时间的延长,氦核周围的氢越来越少 ,中心核产生的能量已经不足以维持其辐射,于是平衡被打破,引力占了上风。有着氦核和氢外壳的恒星在引力作用下收缩,使其密度、压强和温度都升高。氢的燃烧向氦核周围的一个壳层里推进。这以后恒星演化的过程是:内核收缩、外壳膨胀——燃烧壳层内部的氦核向内收缩并变热,而其恒星外壳则向外膨胀并不断变冷,表面温度大大降低。这个 过程仅仅持续了数十万年,这颗恒星在迅速膨胀中变为红巨星。氦聚变。最后的结局将在中心形成一颗白矮星。
分类特征在赫罗图上,红巨星是巨大的非主序星,光谱属于K或M型。所以被称为红巨星是因为看起来的颜色是红的,体积又很巨大的缘故。鲸鱼座的苎藁增二、金牛座的毕宿五、牧夫座的大角星等都是红巨星;而天蝎座的心宿二、猎户座的参宿四、大犬座VY等则是红超巨星。 大部分的红巨星,其核心是未聚变的氦,能量由氦核外的氢燃烧包层提供,它们在图上构成了红巨星分支(RGB星)。另外一些,其核心是碳等更重的元素,外部是在燃烧的氦包层和氢包层,它们构成了图上水平的渐近巨星分支(AGB星)。在恒星大气中碳含量比氧含量还高的碳星中,AGB星的光谱类型一般属于C-N到C-R型。
演化质量在太阳的0.5至7倍之间的恒星,在耗尽了核心的氢燃料之后,燃烧将会移至核心外围的氢气层。因为惰性的氦核本身没有能源,便因为重力而收缩并被加热,在上面的氢也会跟着一起收缩,因此融合的速度会增加,产生更多的能量,导致恒星变得更为明亮(比原来亮1,000~10,000倍)并且使体积膨胀。体积膨胀的程度超过发光能力的增加,因此表面的有效温度下降。表面温度的下降使得恒星的颜色倾向红色,因此称为红巨星。理论上,恒星光谱从A至K的主序星会演化成为红巨星及红超巨星,而O与B型的恒星会成为蓝超巨星(与红巨星演化有很多不同处)。 当恒星的核心持续收缩到足以点燃3氦过程的密度和温度条件,氦融合就会启动。 对质量小于2.5倍太阳的恒星而言,氦核心需要持续收缩以对抗越来越多的核心的氦积聚,对抗重力的唯有电子简并压力。所以,当温度上升到~1亿度的点燃温度时,早已是类似“白矮星”一般的简并态致密核。这样的氦燃烧无法及时通过热膨胀把能量传输出去,就会出现热失控的氦闪,大约在1分钟内,氦核的大部分都聚变为碳核(以及后续的氧核),并向恒星外层传输出巨量的能量,导致恒星突然性变亮,并持续一个短周期。然后,核心又不再产生能量,外层的氢在较浅的位置上以较复杂的方式继续聚变成氦。恒星核心再次缓慢积聚氦,较长的一段时间后,类似的氦闪又在富含碳-氧内核外的氦包层中再次发生。这时的恒星就位于赫罗图上的渐近巨星分支上,每次氦闪后,从一个红巨星分支进入另一个分支。 大于太阳质量2.57倍的恒星,由于氢核聚变速度更快、核心更热,氦聚变可以在核心尚未收缩到白
矮星密度的简并态前就点燃,整个核反应会比较平顺与持续的进行。当这类恒星初始的重元素含量较低(“贫金属”星)时,它们将进入水平分支——这些恒星在赫罗图上的位置是水平的分布。富含金属的恒星在这个阶段则群聚成赫罗图上的红群聚。 如何定义红巨星是一种演化晚期的恒星,广义上包括氢燃烧以后离开主星序的所有的大光度的恒星,它们位于赫罗图的右方或右上方,属于巨星支或超巨星支,通常这些巨星支或超巨星支的恒星大部分是体积和光度均很大的K型星和M型星,因而是光色发红的低温恒星,故称为红巨星,一部分则为O型和B型的蓝巨星或蓝白巨星,还有一些为亚巨星支的G、F、A型黄巨星或黄白巨星、白巨星,这类天体的一部分靠近主序的是刚刚从主序移出不久的主序后恒星,另一些则是演化过程中的处于某一阶段的形式,在这一星族中,存在很多型的变星,如造父变星、天琴座RR型变星等,除此之外,一些处于演化早期的恒星也出现在这一区域中,如金牛座的T型星等,但这一类的恒星周围常有弥漫的气体云,而一般的红巨星则没有,这是两者现象的一个不同之处。各类质量的恒星转化为红巨星的现象是不同的,对于质量较小的恒星(小于太阳质量的一半),氢耗尽后中心发生十分缓慢的`收缩,最终在未引起氦燃烧以前就处于简并态的电子气的平衡态,因而收缩就会停止,而外壳则稍稍向外膨胀一下,即失去了可见光谱的辐射能力,转化为核心物质周围的冷的星云,核心部分外层剩余的氢由于不足以支持星体的辐射而逐渐熄灭,逐渐向简并态电子气平衡的核心收缩。星体核心物质转化为一颗白矮星而消亡,质量更大一些的、在太阳质量1.8—2.2倍以下的恒星,氢耗尽以后核心也收缩为电子气的简并态平衡状态,由于外层的氢燃烧产生的氦不断加入,氦核心质量不断增大,因而缓慢向内收缩,当中心的氦核心质量增大到0.45个太阳质量时,氦核心收缩的温度使氦被点燃,核心物质在简并态电子气平衡的条件下发生核燃烧,产生的热量使氦核心发生膨胀,进而恢复为电子气的非兼并态,然后形成稳定的核燃烧,质量更大的恒星,内部会在非简并态下直接发生核燃烧。 对于质量在太阳1.5倍以下的恒星,它在赫罗图上的移动轨迹是一条底部略有曲折的斜向上的曲线,当恒星移动到这条曲线的顶端时,即发生氦燃烧,尔后,由于恒星物质的热逃逸,氦燃烧变得平稳,光度下降,移至略向左倾斜一点的位置,处于长期的停留状态,而质量在太阳1.5倍以上的恒星,在赫罗图上的移动曲线主要表现为一条水平的曲折的向上移动的轨迹,对于质量在太阳10倍以下的恒星,在移向赫罗图右端时发生氦燃烧,质量大于太阳10倍的恒星,在离开主序后的左端部位即发生氦燃烧,氦燃烧的结果是生成碳。 这个反应通常称为反应,实际上是按照上面两步进行的,直接进行反应的几率很小,由于生成的铍是具有放射性的,只要在非常短的时间内就会重新分解为氦,所以第二步的反应必须紧接着第一步的反应很快地进行,反应才能完整地发生,这就要求星体内部具有较高的密度和温度,这和氢的燃烧大不相同了。恒星内部的氦燃烧的时间比氢燃烧短得多,像太阳这样的恒星可持续10亿年,而质量在太阳几倍到几十倍的恒星,就只有几十万年到几千年,比主序星的寿命短得多,这就是为什么恒星大多分布集中在主序上的原因。