关于初中数学教学设计(通用3篇)
关于初中数学教学设计 篇一
初中数学是学生学习数理知识的重要阶段,如何设计出合理有效的数学教学方案至关重要。在初中数学教学设计中,需要考虑到学生的认知特点、学习需求以及教学目标,同时结合教材内容和学生实际情况,制定出具体的教学计划和教学方法。
首先,初中数学教学设计要充分考虑学生的认知特点。初中生正处于认知发展的关键阶段,他们的思维逻辑能力、抽象思维能力逐渐成熟,但受到认知局限性的影响,需要通过具体的实例和图像来帮助理解抽象概念。因此,在教学设计中应该注重引导学生建立概念,培养他们的逻辑思维能力,同时注重启发式教学,激发学生的学习兴趣和主动性。
其次,初中数学教学设计还要根据学生的学习需求和教学目标进行合理安排。不同学生的数学基础和学习能力各不相同,因此在教学设计中需要分类教学,根据学生的实际情况进行个性化教学。同时,教学目标要明确具体,能够激励学生学习的积极性和主动性,让学生明确知道学习数学的意义和目的,从而提高学习效果。
最后,在初中数学教学设计中,教师应该灵活运用各种教学方法和手段,让学生在轻松愉快的氛围中学习数学知识。教师可以采用讲授、示范、讨论、实验等多种教学方法,让学生在不同的教学环境中得到全面的学习体验。同时,结合现代技术手段,如多媒体教学、网络教学等,丰富教学内容,激发学生的学习兴趣和创造力,提高教学效果。
总的来说,初中数学教学设计是一个综合性的过程,需要全面考虑学生的认知特点、学习需求和教学目标,灵活运用各种教学方法和手段,为学生提供一个有效的学习环境,帮助他们掌握数学知识,提高学习能力和创新能力。
关于初中数学教学设计 篇二
初中数学教学设计是数学教学工作的核心,合理的教学设计可以提高学生的学习效果,增强他们的学习兴趣。在初中数学教学设计中,要注重培养学生的数学思维能力和解决问题的能力,激发学生学习数学的兴趣和动力。
首先,在初中数学教学设计中要注重培养学生的数学思维能力。数学思维是学生学习数学的核心能力,是解决数学问题的基础。在教学设计中,教师应该注重培养学生的逻辑思维能力、创新思维能力和问题解决能力,引导他们建立正确的数学思维方式,培养他们的数学思维习惯,提高他们的数学素养。
其次,在初中数学教学设计中要注重培养学生的解决问题的能力。数学是一门实践性很强的学科,解决问题是数学学习的重要目标。在教学设计中,教师应该注重培养学生的问题意识、问题分析能力和问题解决能力,通过设计一些具有启发性和挑战性的问题,激发学生主动探究和解决问题的兴趣,提高他们的问题解决能力。
最后,在初中数学教学设计中要注重激发学生学习数学的兴趣和动力。数学是一门抽象的学科,学生往往难以感受到学习数学的乐趣。在教学设计中,教师应该注重培养学生对数学的兴趣,通过生动有趣的教学内容、形象生动的教学方法,激发学生学习数学的兴趣和动力,使他们在轻松愉快的氛围中爱上数学,提高学习效果。
总的来说,初中数学教学设计是一个综合性的过程,需要注重培养学生的数学思维能力和解决问题的能力,激发学生学习数学的兴趣和动力,为学生提供一个良好的学习环境,帮助他们掌握数学知识,提高学习能力和创新能力。
关于初中数学教学设计 篇三
教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
初中数学教学设计与反思
《用函数的观点看一元二次方程》
一、教学目标:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点
利用二次函数的图象求一元二次方程的近似根。
教学难点:
理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
[活动1] 检查预习 引出课题
预习作业:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境 探究新知
问题
1.课本P16 问题.
2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?
(结合预习题1,完成课本P16 观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的
图象和x轴交点
两个交点
一个交点
没有交点
教师重点关注:
1.学生能否把实际问题准确地转化为数学问题;
2.学生在思考问题时能否注重数形结合思想的应用;
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3] 例题学习 巩固提高
问题: 例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4] 练习反馈 巩固新知 一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根 两个相异的实数根两个相等的实数根 没有实数根 根的判别式Δ=b2-4ac b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
问题:(1) P97.习题 1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5] 自主小结,深化提高:
1.通过这节课的学习,你获得了哪些数学知识和方法?
2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1.题促使学生反思在知识和技能方面的收获;
2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6] 分层作业,发展个性:
1.(必做题)阅读教材并完成P97 习题21。2: 3、4.
2.(备选题)P97 习题21。2:5、6
设计意图:分层作业,使不同层次的学生都能有所收获。
七、教学反思:
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方
法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
1.关于《长城》 教学设计
2.关于将心比心教学设计
3.关于位置与方向教学设计
4.关于乐高教学设计
5.关于窃读记的教学设计
6.关于《杨
氏之子》教学设计7.关于《草原》教学设计
8.关于《女娲补天》教学设计
9.关于顶碗少年教学设计
10.关于图案花的教学设计