《圆的面积》的教学设计(优选6篇)
《圆的面积》的教学设计 篇一
在初中数学教学中,圆的面积是一个比较重要的概念,也是学生比较容易混淆的知识点。为了帮助学生更好地理解和掌握圆的面积的计算方法,我设计了以下教学方案。
1. 目标:通过本节课的学习,学生能够正确理解圆的面积的概念,掌握计算圆的面积的方法。
2. 教学内容:
a. 复习圆的相关知识,包括圆的定义、半径、直径等基本概念。
b. 引入圆的面积的概念,解释圆的面积的定义及计算方法。
c. 讲解如何利用公式计算圆的面积,即S=πr2。
d. 练习:提供一些练习题,让学生通过计算来巩固所学知识。
3. 教学方法:
a. 案例教学法:通过实际案例引导学生理解圆的面积的概念。
b. 提问互动:鼓励学生积极参与课堂讨论,提出问题并解答问题。
c. 计算实践:让学生在课堂上进行实际的计算练习,加深对圆的面积的理解。
4. 教学过程:
a. 通过图片或实物展示圆的概念,引导学生认识圆的特点。
b. 讲解圆的面积的定义及计算公式,让学生理解面积的概念。
c. 通过示范计算圆的面积的例题,引导学生掌握计算方法。
d. 练习环节:让学生进行练习题,检验他们对圆的面积的掌握情况。
e. 总结:对本节课的内容进行总结,强调重点知识点。
通过以上教学设计,我相信学生能够在轻松愉快的氛围中学习圆的面积的知识,掌握计算方法,提高数学学习的兴趣和能力。
《圆的面积》的教学设计 篇二
圆的面积是初中数学中一个比较抽象的概念,如何通过生动有趣的教学方法帮助学生理解和掌握这一知识点呢?下面是我设计的教学方案。
1. 目标:通过本节课的学习,学生能够正确理解圆的面积的概念,掌握计算圆的面积的方法,并能够灵活运用于解决实际问题。
2. 教学内容:
a. 复习圆的相关知识,引出圆的面积的概念。
b. 利用实物或图片展示圆的面积的计算方法。
c. 讲解圆的面积的计算公式,让学生理解公式的由来。
d. 提供一些生活中的实际问题,引导学生应用所学知识进行解决。
3. 教学方法:
a. 视频教学:通过播放有趣的视频动画,引起学生的兴趣,加深对知识点的理解。
b. 分组合作:让学生分组进行讨论和解答问题,培养学生的团队合作意识。
c. 实践操作:让学生在课堂上进行实际的计算操作,提高他们的动手能力。
4. 教学过程:
a. 通过引导问题激发学生对圆面积的兴趣。
b. 利用视频动画或实物展示圆的面积的计算方法,让学生直观感受。
c. 讲解圆的面积的计算公式,引导学生理解公式的意义。
d. 提供实际问题,让学生运用所学知识解决,培养他们的实际应用能力。
e. 总结:对本节课的内容进行总结,强调重点知识点,鼓励学生继续深入学习。
通过以上教学设计,我相信学生能够在轻松愉快的氛围中学习圆的面积的知识,掌握计算方法,并能够灵活运用于实际问题的解决中,提高数学学习的效果和兴趣。
《圆的面积》的教学设计 篇三
教学目标:
1.通过两次剪圆,感知对圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,知道圆心和半径的作用,会用圆规画圆,提高对圆的认识;通过建构,掌握对圆的认识;通过应用,使学校数学向生活数学延伸,升华对圆的认识。
2.通过欣赏生活中的圆、用圆设计的图案,发现数学美,提高学习的兴趣。
3.通过介绍圆,培养主动建构的能力;通过学生系列的探索活动,培养学生科学的探究态度,发展学生的空间观念。
教学重点:
认识圆,掌握圆的特征。
教学准备:
学生:剪刀、彩色纸剪一个平面图形、圆规、直尺、圆形物体一个、一张方格纸
教师:圆规、直尺、一个圆、一根长绳、课件
教学设计思路:
圆在生活中是很常见的,应用也是非常广泛的。通过举例、欣赏、想象基础上的两次剪圆、套圈基础上的探究活动,实现对生活数学的提炼和向学校数学的过渡;通过用圆形物体画圆、用圆规画圆、用绳子画圆,实现生活数学与学校数学的精密结合;通过设计汽车轮胎、测量实物圆的直径、利用圆设计图案,实现学校数学的提升和向生活数学的延伸。
学生对生活中的圆是认识的,对数学中的圆也是有一定基础的。通过两次剪圆,感知对圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,提高对圆的认识;通过建构,掌握对圆的认识;通过应用,升华对圆的认识。
教学预设活动:
一、剪圆,感知对圆的认识
师:同学们,这节课我们一起来研究圆,板书圆。你见过圆吗?在哪里见过?
师:放课件,欣赏生活中的圆。
师:请你闭上眼睛在脑子里勾画一下圆的形状.
师:直接剪出你印象中的圆。
师:剪下来的图形跟你印象中的圆完全一样吗?有什么不同?
师:怎样才能剪出你印象中的圆呢?在刚才的基础上剪一剪。
师:通过剪圆,你觉得圆与带来的平面图形的最大区别是什么?
二、探究,理解对圆的认识
师:我有一件礼物,谁先抢到就送给谁,你认为现在这种排列合理吗?为什么?怎么排队最合理?我应该站在哪儿?你怎么跑?哪两个人之间的距离最远?
师:我们把刚才讨论的内容在这个圆中表示出来,分别怎么表示?分别叫什么?
师:直径真的是最长的吗?怎么验证呢?
师:请你猜想一下,圆会有哪些特征?根据学生的猜想教师板书。
师:你能验证这些猜想吗?请你试一试。如果一个人验证有困难可以找人合作。
师:谁愿意说说你是怎么验证的?有补充吗?在验证过程中有新的发现吗?
三、画圆,提高对圆的认识
师:我们知道要剪圆先要画圆,你以前画过圆吗?你是怎么画的?
师:如果想画一个半径是3厘米的圆,借助什么来画会比较方便?你会画吗?
师:谁愿意展示你是怎么画圆的?先说再画。有不同的方法吗?
师:若想改变圆的大小,我们可以怎么做?半径的作用是?
师:若想改变圆的位置,我们可以怎么做?圆心的作用是?
师:你还知道其他画圆的方法吗?
师:我想到操场上画一个很大的圆,你能帮我想个办法吗?谁愿意示范?用这种方法画圆要注意什么?
四、建构,掌握对圆的认识
师:同学们,刚才我们对圆进行了研究,现在请你闭上眼睛回忆一下我们学习的过程,整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?
五、应用,升华对圆的认识
师:如果你是汽车设计师,会把车轮设计成什么形状?说说你的理由?为什么不设计成其它形状呢?
师:其实利用圆还可以设计出非常美的图案,欣赏用圆设计的图案。
师:你能利用圆在方格纸上设计一个漂亮的图案吗?
六、练习。
《圆的面积》的教学设计 篇四
教学内容:
新人教版数学六年级上册第67—68页,圆的面积。
教学目标:
1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。
2、经历圆的面积计算公式的推导过程,体会转化的思想方法。
3、培养认真观察的习惯和自主探究、合作交流的能力。
教学重难点:
1、运用圆的面积计算公式解决实际问题。
2、理解圆的面积计算公式的推导过程。
教学准备:
多媒体课件
教学方法
:自主探究,合作交流
教学过程:
一、小测验:
1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。
2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。
二、问题引入
1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?
2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)
3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)
三、探索新知
(一)复习,平面图形面积的计算方法。
(二)探索圆面积的计算方法
1、我们一起来推导圆的面积公式吧!
2、利用多媒体课件展示圆的面积公式的推导过程。
(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。
(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。
3、在图形的拼凑与转化中,同时观察与思考以下问题。
a、拼凑中,圆在转化成什么图形?
b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?
4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)
因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)
如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2
5、学生齐读公式
S= πr2
教师强调r2= r × r(表示2个r相乘)
(三)应用公式
一个圆的半径是4厘米。它的面积是多少平方厘米?
思考:
1、本题已知什么,要求什么?已知圆的半径,求圆的面积。
2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,
3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。
例
1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?
2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。
3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。
4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。
(四)知识应用
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。
课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。
2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。
3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。
四、课堂总结:这节课,你有哪些收获?
说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。
五、作业布置:
教材第71页,练习十五,第1题~第4题。
《圆的面积》的教学设计 篇五
一、学习目标:
1、通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能利用公式进行简单的面积计算,会解决简单的实际问题。
3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
重点:
圆的面积公式的推导及应用公式计算。
难点:
圆面积公式的推导过程。
二、教学准备:
教学课件
分成不同等份的圆形卡纸、纸板、胶棒
三、教学过程:
(一)、复习铺垫,导入新课:
1、看到老师手中的圆,你能想到有关圆的什么知识?
学生汇报。
2、你们还想知道圆的什么知识?
学生交流。
3、那你知道什么是圆的面积吗?
学习圆的面积的概念。
请学生到台前比划比划。
4、你已经会计算哪些平面图形的面积了?打开练习本写一写。
全班反馈。
师课件出示图形及公式。
5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。
学生汇报交流,教师课件演示。
回忆平行四边形面积计算公式的推导过程。
高宽
6、总结方法:这些图形面积公式的推导过程有什么共同点?
预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。
师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?
师板书:转化法
(二)、利用转化,推导公式:
1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
学生操作。
2、师:谁能告诉老师你们小组把圆转化成了什么图形?
生到台前展示。
预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。
师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。
师板书:操作法
3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
预设:生1:平均分的份数越多,拼成的图形越接近于长方形。
生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。
(1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?
(2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?
(3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?
小组同学之间互相说说推导过程。
5、全班演示、汇报:
学生到台前演示交流。
(1)把圆16等分拼成近似的平行四边形。
(2)把圆32等分拼成近似的长方形。
(=(r)
①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。
②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。
教师课件演示。组织学生进行语言表述。
(三)、认真练习,巩固新知:
1、师:计算圆的面积一定要有什么条件?学生交流。
2、课件出示练习题:
(1)求下面各圆的面积。
r= 3厘米
d= 2分米
C= 12。56米
(2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)
(3)圆形花坛的直径20m,它的面积是多少平方米?
拓展练习:
一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。
(1)这头奶牛最多可吃掉多大面积的草?
(2)奶牛吃不到的草坪的面积有多大?
四、板书设计:
学习方法:
转化法
长方形面积=长×宽
操作法↓ ↓
圆的面积=圆的周长的一半×圆的半径
化曲为直S = πr × r
平行四边形面积=底×高
↓ ↓
圆的面积=圆的周长的一半×圆的半径
S = πr × r
五、教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。
(一)、重视自主探究,促进合作交流。
让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
(二)、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。
(三)、练习设计适当,由浅入深地巩固新知。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
《圆的面积》的教学设计 篇六
一、教材内容:
本节课内容是求圆的面积
二、教学目标:
知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、
能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三、教学重点难点:
重点:圆的面积公式的推导过程以及圆的面积公式的应用。
难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。
四、教学流程
1、复习迁移,做好铺垫
师问:
(1)长方形面积公式
(2)平行四边形面积公式
师:平行四边形面积公式的求法是借住谁来推导出来的?
2、创设情景,引入课题
用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?
问题:
(1)小牛能够吃草的最大面积是一个什么图形?
(2)如何求圆的面积呢?
3、师生互动,探索新知
(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?
(2)让学生动手操作:
教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。
(3)让学生转化的过程进行展示。(略)(多组学生展示)
(4)用多媒体进行验证。
让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。
师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(5)引导归纳:
思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
思考2:长方形的长、宽与圆有什么关系呢?
再次多媒体展示动画。
师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,
即:圆的面积=长方形的面积=长×宽=πr×r
得到:s圆=πr×r
师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。
4、实际应用,强化新知
(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?
师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。
(2)出示例题:
例题1:已知一个圆的直径为24分米,求这个圆的面积?
a、让学生独立练习,b、指名板演,c、师生评议。
例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)
a、学生独立练习,b、指名板演,c、师生订正。
师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。
5、巩固练习,深化新知
1、判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()
(2)半径为2厘米的圆的周长与面积相等。()
2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少
6、课内总结,梳理新知
师:(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
7、布置作业