数学归纳法教学设计
一、关于教学目标设计:
根据本节内容的作用、地位以及学生的具体情况,我把这节课的教学目标分为以下三个子目标:
知识目标: 理解数学归纳法的原理和本质;掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的恒等式。
能力目标:培养学生观察、分析、论证能力,进一步发展学生的抽象思维能力和创新能力。
情感目标:创设一种愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率,激发学生学习潜能。
在情感目标的设计上我颇费一番心思。因为情感目标是无法定量评价的,对情感目标的考察是一个综合多方面情况的长期的过程。究竟一堂课是否达到了它应给予的情感体验,别说评价者,就是作为教学对象的学生本身,也不会像学会公式、定理的应用那样,明确自己所得。所以,情感目标就很容易变成一种摆设,甚至只是教案上的一种点缀,在教学过程中被置于从属或可有可无的地位。然而,当前我国的教改的实践主要是素质教育,究其本质是对完整健全人格的追求与培养,即强调教育的人文精神,凸现教育主体的人格特征。我们的教学对象不仅是一个被动的认知体,更重要、更本质的是活生生的生命体。因此我们在课堂教学中必须确立这种人文观,明确情感目标确立的重要性,由传授知识向情感培养延伸。
数学归纳法的知识内容有其独特性,我通过讲小故事、学生动手摆多米诺骨牌游戏、做评判者为别人纠错等手段创设一种愉悦情境,使学生处于积极思考、大胆质疑氛围,力争做到提高学生学习的兴趣,激发学生学习潜能。
二、关于学生学习情况分析及教学重、难点的设计
学生在学习本节课之前,已经学习了用归纳法推导等差数列、等比数列的通项公式,但其正确性还有待用数学归纳法加以证明,因此数学归纳法学习是数列知识的深入与扩展。它既是高中代数中的一个重点和难点内容,也是一种重要的数学方法。学生在学习数列求通项时,也已经具备一定的归纳、猜测能力,多数同学对数学的学习有相当的兴趣和积极性。但在探究问题的能力、合作交流的意识等方面发展不够均衡,尚有侍加强。为了避免机械套用数学归纳法证题的两个步骤,造成学生思维的堕性及僵化,因而我把分析数学归纳法的原理和实质作为本节课的重点,考虑学生对第二步中的递推思想感到困难,因此把正确理解第二步中的递推思想作为难点。
三、教学过程反思:
1) 课开始,情趣生;
数学归纳法是高中数学教学的重点和难点之一,新课引入之前,为让学生懂得不完全归纳法的不完备性,明确学习数学归纳法的重要性及唤起学习的热情,我先讲了一则民间小故事:地主儿子识字。大意是:地主花重金请了一名先生教儿子识字,第一天学了“一”,第二
天学了“二”,之后,地主儿子想:“一”是一横,“二”是二横,那“三”肯定是三横,第三天果不其然是三横,于是地主儿子对地主说:不必学了,很简单,已经全会了。地主大喜,为吹嘘儿子聪明,大摆宴席。席间,一乡绅想讨好地主,就说让地主儿子给他写个名帖,没想到这让地主儿子出尽了洋相,因为那位乡绅的名字叫“万百千”。讲到这里学生大笑,笑声中明确了,不完全归纳法是不可靠的,同时激起对“数学归纳法”的庐山真面目的好奇,渴望一探究竟。教师通过故事渲染气氛,激发学生的求知欲望,消除潜在的心理负担,使教与学有良好的匹配。
2) 课进行,情趣浓;
新课是从让学生玩多米诺骨牌游戏开始的。我准备了一些军棋子,让学生动手摆放,并完成游戏。然后提出问题:多米诺骨牌游戏成功对骨牌的摆放与操作有什么要求?学生思考讨论,得出多米诺骨牌游戏成功依赖两个条件
第一步:第一张牌被推倒,
第二步:假若前一张牌被推倒,则后一张牌被推倒。
其中第二步用到的就是递推关系,如此通过动手、动脑,及动画演示等形象展示递推关系,为教学难点突破提供直观的的参照物,作感性上的突变,从而分解数学归纳法的一个难点。然后适时给出数学归纳法的定义及步骤。由于学生始终走在一条充满轻松、愉悦的学习道路上,归纳原理很容易被学生所接受。
例题的证明过程中,在第二题等差数列的通项公式的证明中,学生在证n=k+1命题成立这步时出现利用结论证结论,不用归纳假设的问题。这也是数学归纳法中最常见的问题。于是,我再一次结合多米诺骨牌游戏,明确第k+1张骨牌是要被第k张骨牌推倒,才是符合游戏规则的。因而在应用数学归纳法证明中,一定做到让归纳假设“粉墨登场”,有它的参与证得的n=k+1时的成立才建立了递推关系即逻辑推理链,实现了在验证命题n=n0正确的基础上, 利用命题本身具有传递性,运用“有限”的手段来解决“无限”的问题。
紧接着,我设计了两个纠错的题,
a) 小明认为下面的一个结论是正确的,且给出了证明,你认为这里有无错误呢?
1+3+5+……+(2n-1)=n2 +1 (n∈N )
证明:假设n=k(k∈N ,k≥1)时等式成立,即:
1+3+5+……+(2k-1)=k2 +1,
当n=k+1时由假设得:
1+3+5+……+(2k-1)+(2k+1)= k2+1+2k+1=(k+1)2 +1,
所以当n=k+1时等式也成立。可知,对n∈N ,原等式都成立。
b) 用数学归纳法证明 :
1+3+5+……+(2n-1)=n2 (n∈N ).
下面是小强同学的证法, 你认为他做得对吗? 请说明理由.
证明:①当n=1时,左边=1,右边=1,等式成立。
②假设n=k(k∈N ,k≥1)时等式成立,即:
1+3+5+……+(2k-1)=k2,
当n=k+1时由等差数列前项和公式得:
1+3+5+……+(2k-1)+(2k+1) = =(k+1)2,
所以当n=k+1时等式也成立。
由①和②可知,对n∈N ,原等式都成立。
这样安排的目的是让学生进一步领会数学归纳法的原理和实质
3)课结束,情趣存
这节课的小结是以“提出问题”的方式进行的,我设计以下问题并和学生共同讨论回答。 I. 数学归纳法是怎样运作的?
(在验证命题n=n0正确的基础上,证明命题据有传递性,形成了逻辑推理链,以一次逻辑的推理代替了
无限的验证过程.)II. 数学归纳法适用于证明什么样的的命题? (数学归纳法适用于证明:和正整数有关的命题。)
III. 数学归纳法基本思想是什么?
(在可靠的基础上利用命题本身具有传递性,运用“有限”的手段来解决“无限”的问题。) IV. 应用数学归纳法证明命题所依据的自然数的性质是什么?
(自然数集的任一非空子集都有最小数。)
V. 应用数学归纳法证明问题时要注意什么?
(递推基础要打牢, 递推依据不能少, 归纳假设要用到。)
由于这些问题都是关于数学归纳法实质及原理的内容,对初次接触数学归纳法的学生来说,回答起来比较困难。为此我在课件的处理上运用了漫画的手法,设计这样一个场景:将这些问题由一名儿童提出来的,旁边坐着他的老师,他在向老师求教。这样,就把我的学生置身于旁观者的角度,减轻了因接受提问所带来的压力。而画面上又是一个小孩子在向长者求教,这使得学生潜意识里增强一种自信,认为小孩子的问题终归会知道一二的。于是热情并渴望表现的学生们便积极展示观点、畅所欲言。
我这样做的目的是希望了解学生经过这堂课的学习,对数学归纳法原理和实质究竟有怎样的认识,哪些是正确的,哪些是错误的,还有哪些是需要接下来课程中补足的。对错误的认识,我会立即帮助纠正。而对正确的,即便现在还很朦胧我也并不急于点破主题,让学生在接下来的“数学归纳法的应用”的课上再加深认识,进行自我完善。我相信:已经除去杂草的庄稼,必定会茁壮成长的。
然而,从这堂课的实践结果上看,这个环节并不是想象中这样理想,原因有两方面,一个使我有些急,怕时间不够而没有放开让学生发表意见,越俎代庖。另外一个就是学生也拘泥于是一堂录像课,吃不准的观点便不像平时那样毫无顾忌的说出来。这也是促使我着急的一个原因。没想到,最后还剩余了一点时间,只好做做练习。总之,在这点上我还需要再进一步研究并改善。
[数学归纳法教学设计]