五年级《解方程》的教学反思【精彩6篇】
五年级《解方程》的教学反思 篇一
在五年级的数学教学中,解方程是一个相对抽象和难以理解的概念,需要教师们采取合适的方法和策略来帮助学生掌握。在我进行解方程教学的过程中,我发现了一些问题并进行了反思。
首先,我发现学生在理解方程的概念时存在困难。他们往往无法准确地将问题转化为方程,也不清楚如何运用适当的方法来解决。这可能是因为他们缺乏对代数式的理解,导致无法正确应用代数知识解题。因此,我意识到在教学中应该更加强调方程与代数式的联系,让学生明白方程是一种特殊的代数式,可以用来表示未知数之间的关系。
其次,学生在解题过程中存在计算错误的情况。有些学生在代数运算时会出现粗心大意的情况,导致答案错误。这可能是因为他们缺乏对数学计算的细心和耐心,需要在解题过程中更加注重细节。因此,在未来的教学中,我准备增加一些练习题,帮助学生提高计算能力和注意力,减少错误率。
最后,我发现学生在解方程时缺乏实际应用的意识。他们往往只是机械地按照公式解题,而缺乏对问题背后意义的理解。因此,我打算在教学中增加一些生活中的实际问题,让学生通过解方程来解决实际问题,提高他们的实际运用能力和思维能力。
总的来说,五年级《解方程》的教学需要教师们不断总结经验,不断改进教学方法,帮助学生更好地理解和掌握这一概念。通过持续的反思和调整,我相信学生的解方程能力会得到有效提升。
五年级《解方程》的教学反思 篇二
在五年级的数学教学中,解方程是一个重要的内容,也是学生们比较容易出现困难的地方。在我进行解方程教学的过程中,我发现了一些问题并进行了反思,并提出了相应的解决方法。
首先,我发现学生在理解方程的含义时存在困难。他们往往无法准确地理解方程所代表的含义,以及如何利用方程解决问题。因此,在教学中,我打算通过生动的例子和实际问题,帮助学生理解方程的概念和作用,引导他们从具体问题中抽象出方程。
其次,学生在解题过程中缺乏逻辑思维。有些学生在解题时只是简单地套用公式,而不懂得运用逻辑思维来推理和解决问题。因此,我准备在教学中增加一些逻辑推理的训练,引导学生从问题出发,通过逻辑推理和思维训练来解决问题,提高他们的解题能力。
最后,我发现学生在解方程时缺乏自信心。有些学生对解方程这一概念感到害怕和压力,导致在解题时手足无措。因此,我打算在教学中增加一些鼓励和肯定,让学生相信自己有能力解决问题,培养他们的自信心和解决问题的勇气。
通过以上的反思和改进,我相信在未来的解方程教学中,学生的学习效果会得到显著提升,他们会更加深入地理解方程的概念和运用能力,为进一步学习数学奠定坚实的基础。
五年级《解方程》的教学反思 篇三
本节课的教学重点和难点是:
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点,因此我进行了大胆的尝试,在讲解方程的解时,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。教学中我先利用演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用演示x+3个方块=9个方块,提问:“如果要称出x有多少块,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?
学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。 另外我还要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。在做练习时我发现大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来求出方程中的未知数,只有个别学生懂得运用等式的性质来求出方程中的未知数。在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的过程叫解方程,使方程左右两边相等的未知数的值,叫做方程的解。
五年级《解方程》的教学反思 篇四
《解方程》这部分内容,是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数思想有着极其重要的作用。
在开课时,通过复习哪些是方程,巩固方程的含义,为后面教学作铺垫。
教学时,我让学生自己说出推想过程,一边板书,一边指出解题的想法,然后着重讲解检验的方法及书写格式,并在后面的巩固练习当中加入口答检验,根据课本上的“注意”强调说明虽然不要求每题都写出检验,但都要口算进行检验,使学生养成良好的学习习惯。
在出示概念时,先让学生自学了概念。自学完概念后,应让学生对两概念讲讲自己的理解,自己勾画出重点字,然后才是教师对概念重点的强调,这样更能区分两概念不同的含义,对难点的突破也是一个很好的方法,可以让学生将易混易错的地方,清楚理解后,明确两概念的区别,这点在课上忽略了。
在后面的反馈练习时,因前面例题的格式讲的还不够明确,所以练习时有点反复,但在后面的练习中学生已完全掌握。巩固练习的层次很好,由易到难,对学生的学习有突破,学生完成的正确率也很高。
这节课整体来说我比较满意,对于细节上的处理。在今后的教学中我会更加注意,使教学更加严谨,也会更注意教材的研读,争取上一节完美的好课。
五年级《解方程》的教学反思 篇五
一、引入了天平,理解等式的性质。
新教材的突出之处从直观的天平入手,天平的两边同时加上或减去相同的重量,仍然保持平衡,这样就引入了等式的性质1,利用这个性质,可以解决a+x=b,或a-x=b的方程,接着又从天平的两边同时乘或除以相同的非零的数,天平仍然平衡,可以解决ax=b或x÷a=b的方程。从长远角度看,学生经过这样的学习,对于七年级以后的后续学习减少了障碍,很好地做好了衔接。
二、两条脚走路,解决不便的问题。
教材中有意避免了形如-x或÷x的方程的出现,可是在实际中,出现这种方程是不可避免的,如果出现了,我们教者如何解释呢?学生又应如何解答呢?当然还可以根据等式的性质来进行左右两边的化解,使得左边或右边变为形如x的情况,学生对于其中的减数与除数为未知数还可以启发他运用四则运算的内部的关系来解决。不要怕给了学生又一种选择的机会,这样在用等式的性质解决问题不方便时,未尝不是一种好的方法。
三、抓住其本质,简化方程的过程。
两边同时加上或减去同一个数的过程,其本质是为什么要这么做,当学生经过思考发现这样的过程就是把方程的一边变为只剩下未知数的过程,因而可以简化一些不必要的多余过程,典型的如x+5=20,x+5-5=20+5,让学生通过计算体验这样的第二步过程实际即为x=20+5,因而可以使方程的解答变得简便。学生觉得当然还是简便的过程值得效仿,积极性显得非常之高。
四、确保正确率,及时进行检验。
原来的检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的正确率也提高了。
同时,在这部分的教学期间,也有一些问题引发了个人的一些思考。
首先是学习中如何提高学生的学习规范性,方程的解答是一种规范的过程,它有一些固定的格式,例如必须写“解:”,必须“=”上下对齐,要正确必须进行检验等,而这些都必须让学生多进行训练,多强化练习,理解各种题型的结构。
其次是对于特殊方程的解答,如减数与除数为未知数的方程,用两种方法解决的问题,可能会引起部分的的不理解,会不会与教材主倡导的用等式的性质解决问题有矛盾呢
五年级《解方程》的教学反思 篇六
解方程是是数学知识里面很关键很重要的一个知识点。,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。
在教这单元之前,我一直困惑解方程要采用初中的“移项”解题,还是运用书本的“等式性质”解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系”解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项”解题,学生对于这个概念或许不会系统清晰,但是“等式性质”解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系”老教材的方式改变,必有他的理由,能用吗?困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。
因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。了解这一信息,我决定采用新老教材一起使用,先从教材中的运用等式基本性质教学孩子会解简单的方程,以便初中学习可以衔接,而初中的“移项”也会顺利的接收,但是面对现在五年级的思维和解题的方便性,我再教学老教材的“四则运算关系”解放程,至少这样能让现在的学生会解各种题型的方程。在我看来,这样的教学书本的知识不丢,方法又可以多种变通。所以我在教学解方程的时候,给他们灌输了两种方法,第一种方法就是课本上的根据等式的性质去解方程,另一种方式就是初中阶段的“移项”,在这里的时候,我给初中的“移项”起了一个新的名字:移——变号。引入了这一个方法,学生解方程的兴致有了很大的提高,解方程也变得容易了许多。
但是在移-变号这种情况下,有出现了21÷x=7,和20-x=3的这样的特殊情况,而我则让他们记住,只要x在后面,就要运用到四则运算“除数=被除数÷商”和“减数=被减数-差”这两种情况。通过练习,学生解方程正确率有了很大的提高,但是与之而来的是,学生忘了等式的兴致,忘了移—变号是怎么来的,而我,则在移-变号的基础上,再一次的回顾,让他们明白移-变号的立脚点就是等式的性质,如此反复,学生加强了对解方程的认识,也更牢固的记住了等式的兴致。而通过这一次的上课,我意识到,老师在上课之前,一定要更好的预设,只有在这样的情况下,生成的结果,才不会顾此失彼。而身为老师,一定要好好的研究教材,钻研透知识点,只有这样,才能够给学生清晰的思路。