小学数学几何画板课件
【教学内容】
23.2.2 中心对称图形
【教材分析】
平移、旋转、翻折是几何图形的三种基本运动。本章研究这三种运动的基本特征及简单的运用问题,采取以生活实例为背景,从操作到表象到概念(性质)再到简单应用为主线,引导学生通过操作实验获得知识。通过本章学习,学生将体会运用运动的观点看待静止的几何图形,感知初步的几何变换思想,为今后研究图形的全等和相似奠定基础。
【学生分析】
根据我们九年级学生的认知水平,由于刚学习了中心对称图形,在理解两个图形关于某一点中心对称的意义上,会与前者概念混淆。为了帮助学生建立中心对称与中心对称图形的区别与联系,一要加强直观性和现实性,合理使用多媒体;二要充分利用学生已有的知识和经验;三要提倡学生体验,注重操作实践;四要热情鼓励、耐心指导。
【教学目标】
1、知识与技能:经历两个图形关于某点形成中心对称的过程,初步掌握中心对称的概念,并能建立中心对称与中心对称图形的区别与联系。
2、过程与方法:理解两个图形关于某点成中心对称的意义,能找到两个成中心对称图形的对称中心。
3、情感态度与价值观:找到两个成中心对称图形的对称中心、对应点、对应线段、对应角。
【几何画板设计意图、操作设想】
设计操作1:设计一个实际操作问题形象引进中心对称。
设计操作2:直观感受两个三角形关于某点成中心对称,便于找对称中心、对应点、对应角、对应线段。
设计操作3:动态演示点、线、面的作图过程。
设计操作4:找对称中心时隐去部分线段,能小结出 “寻找对称中心,只需分别联结两对对应点”。
【教学过程】
一、 情景引入 概念形成
概念形成
几何画板教学设计案例——中心对称图形
给出上图。
提问:如果把这张图形看作一个整体,它可以绕着点O整体旋转。它是我们近期学过的哪种图形?(你能说说什么叫中心对称图形吗?) 中心对称图形:如果把一个图形绕着一个定点旋转180°后,与初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
几何画板教学设计案例——中心对称图形 几何画板教学设计案例——中心对称图形
操作:现在将这个图形看作两个图形,红色图形绕着点O旋转,能与绿色图形完全重合。
引出概念:
中心对称:把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,我们就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
(课题)11.4 中心对称
提问:请对照概念,说说中心对称与中心对称图形的区别与联系?
联系:如果把中心对称图形的两部分分别看作两个图形,那么它们成中心对称;如果把中心对称的两个图形看作一个整体,那么它成为中心对称图形。
二、应用探究
操作:请看,两个三角形是否关于点O成中心对称?
几何画板教学设计案例——中心对称图形
1、观察:这两个三角形关于点O成中心对称,请找出它们之间的对应点,对应线段,对应角,对称中心。
几何画板教学设计案例——中心对称图形
强调:如果两个图形关于某一点中心对称,那么其中一个图形中任何一点关于某点的对称点都在另一个图形上。
1、思考:对称中心点O的位置有什么特点?
探究中心对称性质
性质:
对称中心平分每一组对应点的连线段。
例题1:
按照下列要求画出图形:
(1)画出线段AB关于点O的中心对称的线段。(教师板演)
(2)画出三角形ABC关于点O的中心对称的图形。(口述)
适时小结:
画一个图形关于某点的对称图形的画法是先画出图形中的几个特殊点(如多边形的顶点、圆的圆心等)关于某点的对称点,然后再顺次联结有关对称点即可。
例题2:
1、画出如图所示的四边形ABCD关于点O的中心对称的图形。
几何画板教学设计案例——中心对称图形
2、隐去对应点的连线段后,你能找到它们的对称中心吗?
几何画板教学设计案例——中心对称图形
适时小结:
寻找对称中心,只需分别联结两对对应点,所得两条线段的交点就是对称中心。(两条直线相交,且只有一个交点。)
三、练习反馈
1、画出下列成中心对称的图形中的对称中心:
几何画板教学设计案例——中心对称图形几何画板教学设计案例——中心对称图形
2、把△ABC绕着边AB的中点O旋转180°,画出旋转后的图形:
几何画板教学设计案例——中心对称图形
提问:把△ABC绕着边AB的中点O旋转180°旋转后的图形是小学学过的什么图形?
3、画出如图所示的旗子关于点O对称的图形。
几何画板教学设计案例——中心对称图形
四、课堂小结
知识小结:
1、两个图形关于某点成中心对称的概念。
2、会用性质画已知图形关于某一点对称的图形。
3、会找对称中心。
4、认识中心对称与中心对称图形的区别与联系。
五、布置作业:
习题74页 1、2题
[小学数学几何画板课件]