初一下学期数学不等式练习题
一、选择题
1、在数轴上表示不等式 ≥-2的解集,正确的是( )
A B C D
2、下列
叙述不正确的是( )A、若x<0,则x2>x B、如果a<-1,则a>-a
C、若 ,则a>0 D、如果b>a>0,则
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
4、不等式 的正整数解为( )
A.1个 B.3个 C.4个 D.5个
5、不等式组 的整数解的和是 ( )
A.1 B.2 C.0 D.-2
6、 若 为非负数,则x的取值范围是( )
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
7、下列各式中是一元一次不等式的是( )
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
8、若│a│>-a,则a的取值范围是( )
A. a>0 B.a≥0 C.a<0 D.自然数
9、不等式组 的解集是( )
10、如果关于x、y的方程组 的解是负数,则a的取值范围是
A.-45 C.a<-4 D.无解
11、若关于x的不等式组 的解集是x>2a,则a的取值范围是
A. a>4 B. a>2 C. a=2 D.a≥2
12、若方程组 中,若未知数x、y满足x+y>0,则m的取值范围是
二、填空题
13、不等式2(1) x>-3的解集是 。
14、用代数式表示,比x的5倍大1的数不小于x的 与4的差 。
15、若(m-3)x<3-m解集为x>-1,则m .
16、三角形三边长分别为4,a,7,则a的取值范围是
17、若不等式组 的解集为-1
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
三、计算题
19、解下列不等式(组)
(1)5(x+2)≥1-2(x-1) (2)
20、关于x的不等式a-2x<-1的解集如图所示.求a.
四、解答题
21、某城市一种出租汽车起步价是10元行驶路程在5km以内都需10元车费),达到或超过5km后,每增加1km,1.2元(不足1km,加价1.2元;不足1km部分按1km计)。现在某人乘这种出租车从甲地到乙地,支付17.2元,则从甲地到乙地路程大约是多少?
22、若不等式组 的解集为-1
23、已知多项式a2-5a-7减去多项式a2-11a+9的差等于不等式5-4x<0的最小正整数解,求a的值。
24、一件由黄金与白银制成的首饰重a克,商家称其中黄金含量不低于90%,黄金和白银的密度分别是19.3 和10.5 ,列出不等式表示这件首饰的体积应满足什么条件.(提示:质量=密度×体积.)
25、某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆0.5元,一般车的保管费是每辆0.3元.
(1)一般车停次的辆次数为x,总的保管费为y元,试写出y与x的关系式;
(2)若估计前来停放的3500辆自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.(8分)
26、某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?(10分)
27、为了保护环境,某企业决定购买10台污水处理设备。现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
A型 B型
价 格(万元/台) 12 10
处理污水量 (吨/月) 240 200
年消耗费 (万元/台) 1 1
经预算,该企业购买设备的资金不高于105万元.
(1)请你设计该企业有几种购买方案;
(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)