数学广角-教学反思原创:.1.10(推荐3篇)

数学广角-教学反思原创:.1.10 篇一

在教学数学的过程中,我发现学生在理解抽象概念时往往遇到困难。在教授代数的课程中,我尝试了一种新的教学方法,即通过生活中的实际例子来帮助学生理解抽象概念。我选择了一个关于银行账户的例子,让学生通过计算存款和取款的过程来理解代数中的加法和减法运算。

首先,我给学生提供了一个简单的银行账户表格,包括存款、取款和余额等信息。然后,我让学生在表格中填写不同的数字,并进行相应的计算。通过实际操作,学生能够更直观地理解加法和减法运算的含义,以及它们在代数中的应用。

在这个过程中,我发现学生对于代数的理解有了明显的提高。他们能够更快速地掌握加法和减法运算的规则,也能够更灵活地运用这些规则解决问题。通过将抽象概念与生活实际联系起来,我成功地激发了学生学习数学的兴趣,提高了他们的学习效果。

数学广角-教学反思原创:.1.10 篇二

在教学数学的过程中,我发现学生在解决数学问题时往往缺乏自信心。为了帮助学生建立自信心,我尝试了一种新的教学方法,即通过鼓励学生发表他们的观点来提升他们的自信心。在解决几何问题的课程中,我给学生提供了一道开放性问题,并邀请他们依据自己的理解和思考来解答问题。

在学生发表观点的过程中,我不仅鼓励他们表达自己的想法,还积极地给予肯定和鼓励。无论学生的答案是否正确,我都会尊重他们的观点,并指出他们解决问题的思路和方法。通过这种方式,我成功地激发了学生的自信心,让他们更勇敢地表达自己的观点,并更积极地参与到课堂讨论中来。

在课程结束后,我发现学生的自信心得到了显著提升。他们在解决数学问题时更加勇敢和果断,也更愿意表达自己的观点。通过鼓励学生积极参与课堂互动,我成功地提升了学生的自信心,让他们在学习数学的过程中更加快乐和自信。

数学广角-教学反思原创:.1.10 篇三

数学广角-集合教学反思(原创:2018.1.10)

数学广角——集合教学反思(原创:2018.1.10)

集合是现代数学的基本语言,可以简洁、准确地表达数学内容。集合思想

是数学中最基本的思想,甚至可以说集合理论是数学学习的基础。本单元主要介绍韦恩图表示集合及交集、并集的方法,让学生体会集合的概念及集合的交集、并集,学习用集合的思想方法思考和解决简单的实际问题,为今后的学习奠定基础。

成功之处:

1.制造冲突,引发学生自主探索新知。在教学中,首先通过学生提出的问题“参加这两项比赛的共有多少人”,学生给出两种不同的答案:一是参加这两项比赛的共有17人;另一种是参加这两项比赛的共有14人。在这样富有悬念的冲突中,引发学生思考,哪种答案是正确的。学生通过仔细观察统计表,发现有3人是重复的。然后,教师启发学生“你有什么办法能让我们可以清楚地参加跳绳的人数、踢毽的人数、两项都参加的人数吗?”,可以借助画图、表或其他形式试着表示出来。最后通过小组的合作交流汇报学生有这样几种情况:

(1)一一对应的'方法

跳绳:杨明 刘红 李芳 陈东 王爱华 马超 丁旭 赵军 徐强

踢毽:杨明 刘红 李芳 于丽 周晓 朱晓东 陶伟 卢强

(2)画线段图的方法

(3)画图形的方法

(4)集合图

(5)连线的方法

跳绳:杨明 陈东 刘红 李芳 王爱华 马超 丁旭 赵军 徐强

踢毽:刘红 于丽 周晓 杨明 朱晓东 李芳 陶伟 卢强

在上述几种方法中,其中(1)和(5)方法相似,(2)(3)(4)相似,并且(2)(3)就是集合图的雏形。学生能够根据已有经验表示出跳绳人数、踢毽人数和两项都参加的人数,这说明学生通过一年级把1面国旗、2个单杠分别用封闭的曲线圈起来表示数学符号,已经潜移默化地建立起了集合的思想了。

2.重点理解集合的概念及交集、并集。在教学中,利用课件直观演示将两个集合圈合并的过程。要求参加这两项比赛的学生一共有多少人实质上就是求并集的过程,即“求两个集合的并集的元素个数就是用两个集合的元素个数的和减去它们的交集的元素个数”,转变为数学模型就是“两个集合的数量的和减去重复的数量就是这两个集合的总数量”。在解决并集的过程中有多种方法,如:9+8-3=14 9-3+8=14 8-3+9=14 3+5+4=14 这多种方法的演变实质上就是集合中的部分元素所表示的意义,特别是9-3表示的意义是只参加跳绳比赛的人数,8-3表示的是只参加踢毽的人数,并在韦恩图上指出是其中的哪一部分。除此之外,还要让学生明确在韦恩图中参加跳绳的人数里面包含哪几部分,各表示什么数量,参加踢毽的集合图包含哪量部分,各表示什么数量,从而使学生对于集合的概念及各个部分表示的数量有一个清晰的认识。

不足之处:

1.个别学生对于集合包含的部分理解还是有所欠缺,导致学生对于多种方法解决问题存在一定的局限性。

2.学生对于这两句话的理解容易混淆:“两项都参加的”和“参加这两项比赛的”,导致学生在表述上出现问题。

再教设计:

1.适当渗透集合元素的特性:互异性和无序性。互异性指的是集合中的元素是不能重复出现的;无序性指的是集合中的元素顺序可以不同。

2.重点体会并集和交集的含义。如:两项都参加的是表示的交集;参加这两项比赛的是表示的并集。对于这两种说法要让学生区分和体会。

相关文章

《虞美人》教学设计(经典6篇)

《虞美人》教学设计1教学目标:1、抓关键词语,理清思路,熟读成诵。2、理解本词“把抽象的感情具体化”这一艺术特色。教学重点难点:重点:在理清结构的基础上,抓住三组对比,熟读成诵。难点:理解本文艺术特色...
教学资料2014-04-03
《虞美人》教学设计(经典6篇)

科技奥运

科技奥运 科技奥运(科技奥运) 科技奥运是指充分运用现代信息技术,建设各种必要的信息基础设施和信息应用系统,开发各种与奥运会相关的信息资源,营造良好的信息化环境,为各相关组织和个人提供优质的信息服...
教学资料2019-01-08
科技奥运

昆明中考加分名单公示(推荐3篇)

近日,昆明市教育局官网昆明教育信息港陆续公示了中考加分名单。昨天傍晚,昆明市招生考试院将盘龙、东川等14个县(市)区2016年普通高中学校招生录取加分照顾学生名单及加分项目进行补充公示。相比前几天公示...
教学资料2013-08-01
昆明中考加分名单公示(推荐3篇)

小学数学《9的乘法口诀》教学反思【精彩3篇】

一、本节课在教材中的地位和作用本册教材中表内乘法是学习多位数乘法的基?R蛭魏我桓龆辔皇朔ǎ诩扑闶倍家殖扇舾筛鲆晃皇鸵晃皇喑恕R虼耍砟诔朔ㄊ切⊙У闹匾≈叮切⊙枰莆盏幕炯...
教学资料2019-09-09
小学数学《9的乘法口诀》教学反思【精彩3篇】

期功【通用3篇】

期功qī gōng[释义] 亦作“朞功”。古代丧服的名称。期,服丧一年。功,按关系亲疏分大功和小功,大功服丧九月,小功服丧五月。亦用以指五服之内的宗亲。 晋 李密 [例句] &nb...
教学资料2019-02-06
期功【通用3篇】

XRY-1A氧弹式热量计【经典3篇】

XRY-1A型 氧弹式热量计 使用说明 书 目录 一、仪器特点及适用范围…………………………………2二、主要技术指标与参数…………………………………2三、仪器结构……………………………………...
教学资料2015-07-02
XRY-1A氧弹式热量计【经典3篇】