小学五年级数学《体积单位间的进率》说课稿【推荐4篇】
小学五年级数学《体积单位间的进率》说课稿 篇一
标题:体积单位间的进率——从立方厘米到立方米
一、教学目标
1. 知识与能力:了解体积单位间的进率关系,能够进行不同体积单位之间的换算。
2. 过程与方法:通过实际操作和问题解决,培养学生的观察、分析和推理能力。
3. 情感态度和价值观:培养学生的合作意识和探究精神,激发对数学学习的兴趣。
二、教学重难点
1. 重点:体积单位的换算方法和计算技巧。
2. 难点:理解体积单位间的进率关系。
三、教学准备
1. 教材:小学数学教材五年级上册。
2. 教具:立方厘米和立方米的模型、计算器、黑板、粉笔等。
四、教学过程
1. 导入(5分钟)
通过展示一些常见的物体,引导学生思考体积的概念,并与面积进行对比。
2. 新课讲解(15分钟)
(1)引入立方厘米和立方米的概念,让学生观察和比较两者的大小关系。
(2)讲解立方厘米和立方米的换算方法,引导学生进行实际计算练习。
(3)解释体积单位间的进率关系,帮助学生理解不同体积单位之间的换算规律。
3. 拓展练习(20分钟)
(1)通过实际操作,让学生根据给定的物体体积,进行立方厘米和立方米之间的换算。
(2)设计一些实际问题,让学生运用所学知识解决,如:某个容器的体积是10立方米,如果用立方厘米表示,应该是多少?
4. 总结归纳(5分钟)
让学生总结体积单位间的进率关系,提醒他们在实际生活中的运用。
5. 课堂小结(5分钟)
回顾本节课的重点内容,解答学生提出的问题,强调下节课的学习内容。
小学五年级数学《体积单位间的进率》说课稿 篇二
标题:体积单位间的进率——从立方毫米到立方厘米
一、教学目标
1. 知识与能力:了解体积单位间的进率关系,能够进行不同体积单位之间的换算。
2. 过程与方法:通过实际操作和问题解决,培养学生的观察、分析和推理能力。
3. 情感态度和价值观:培养学生的合作意识和探究精神,激发对数学学习的兴趣。
二、教学重难点
1. 重点:体积单位的换算方法和计算技巧。
2. 难点:理解体积单位间的进率关系。
三、教学准备
1. 教材:小学数学教材五年级上册。
2. 教具:立方毫米和立方厘米的模型、计算器、黑板、粉笔等。
四、教学过程
1. 导入(5分钟)
通过展示一些常见的物体,引导学生思考体积的概念,并与面积进行对比。
2. 新课讲解(15分钟)
(1)引入立方毫米和立方厘米的概念,让学生观察和比较两者的大小关系。
(2)讲解立方毫米和立方厘米的换算方法,引导学生进行实际计算练习。
(3)解释体积单位间的进率关系,帮助学生理解不同体积单位之间的换算规律。
3. 拓展练习(20分钟)
(1)通过实际操作,让学生根据给定的物体体积,进行立方毫米和立方厘米之间的换算。
(2)设计一些实际问题,让学生运用所学知识解决,如:某个容器的体积是1000立方毫米,如果用立方厘米表示,应该是多少?
4. 总结归纳(5分钟)
让学生总结体积单位间的进率关系,提醒他们在实际生活中的运用。
5. 课堂小结(5分钟)
回顾本节课的重点内容,解答学生提出的问题,强调下节课的学习内容。
小学五年级数学《体积单位间的进率》说课稿 篇三
教材分析:
这部分内容是在学生已经掌握了长方体和正方体体积的计算方法和认识了体积单位的基础上举行教学的。教材通过复习长度单位米、分米和厘米相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米相邻单位间的进率关系,建立相邻体积单位的进率之间的关系,并通过图示,引导学生推出体积单位之间的进率。
教学方法:
针对以上内容,我准备通过学生的计算、比较、分析、归纳来得出相邻体积单位之间的进率,突出学生的自主探索学习。
教学目标:
(1)知识与技能目标:通过计算、比较、分析、归纳,使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。
(2)过程与方法目标:在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力。
(3)情感与态度目标:使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。
教学重点:
使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。
教学难点:
通过计算、比较、分析、归纳,使学生能探究出相邻体积单位间的进率是1000。
教学过程:
一、复习导入:
1、复习一般长度、面积单位间的进率:
1米=()分米1分米=()厘米
1平方米=()平方分米1平方分米=()平方厘米
2、相邻长度单位、面积单位间的进率是多少?我们在学习面积单位间进率的时候是通过怎样的方法来学习的?
学生相互说说。
3、我们已经认识了哪些体积单位?它们分别是怎样定义的?
学生回答问题。
二、探究新知:
1、出示一个体积1立方分米和一个体积1立方厘米的模型,
提问:1立方分米里有多少个1立方厘米呢?
2、师生研究:1立方分米是一个棱长1分米的正方体的大小。同样一个正方体,把1分米改写成10厘米,那么它的体积是多少立方厘米呢?
学生计算:101010=1000(立方厘米)
比较:同样一个正方体,它的体积可以用1立方分米或者1000立方厘米来表示,说明这两者之间有怎样的关系呢?
(学生比较总结出:1立方分米=1000立方厘米)
3、用同样的方法总结出:1立方米=1000立方分米
4、你能用一句简洁的话来概括吗?
(师生交流总结:每相邻两个体积单位之间的进率是1000。)
5、比较相邻长度单位、面积单位、体积单位之间的进率关系:
名称 图形 类型 进率
长度单位 平面图形 10
面积单位 平面图形 1010=100
体积单位 立体图形 101010=1000
通过比较,使学生进一步明确体积单位间的进率的探索方法,加强学生的理解。
三、解决问题:
1、我们已经学习了小数和复名数,从高级单位、低级单位之间的转化是怎样进行的?
(学生相互说说)
2、已知:1立方分米=1000立方厘米,1立方米=1000立方分米,
那么:1立方分米=()立方米,1立方厘米=()立方分米。
3、教学例1、2。
组织学生进行自主学习研究,集体交流解决的方法。
(学生有了名数之间转换的方法,因此可以适当的突出学生学习的主体作用,让学生来交流解决问题,提高学生运用旧知识解决新问题的能力。)
4、教学例3:
组织学生先自主读题,并进行仔细审题,交流题目的意思。说出有哪些要注意的地方?
适当培养学生的分析能力,养成仔细审题的良好习惯。
学生独立解决可能有两种方法:
(1)先算出用立方米作单位的体积,再改写成立方分米作单位。
(2)先把米作单位的数改写成分米作单位的数,再计算出体积,就是立方分米作单位了。
(对于这两种方法,组织学生进行比较,可以进一步验证相邻体积单位间的进率是1000,并发展和提高学生解决问题的能力。)
四、巩固练习:
1、合理搭配:
5平方米 500立方分米 6780立方厘米 8.5立方米
5立方分米 500平方分米 8500立方分米 2030立方分米
0.5立方米 0.005立方米 2.03立方米 6.78立方分米
2、判断题:
(1)两个体积单位之间的进率是1000。()
(2)棱长6厘米的正方体的表面积和体积相等。()
(3)一个正方体的棱长扩大3倍,表面积和体积都扩大9倍。()
(4)0.5平方分米与50立方厘米一样大。()
3、在括号里填上适当的单位名称:
一个粉笔盒的体积约是0.8()。
一台洗衣机的体积大约是340()。
摩托车每小时行约30()。
一张纸的面积约是6()。
4、选择:
(1)、与7.5立方分米相等的是()。
A:7500立方厘米 B:0.75立方米 C:0.075立方米
(2)、正方体的棱长是a,表面积是(),体积是()。
A:a2 B:6a2 C:a3
(3)一块长方体钢材,长0.4米,宽3分米,高2分米,体积是()立方分米。
A:2400立方厘米 B:0.24立方米 C:24立方分米
(4)一个长方体的盒子,长0.5分米,底面积是16平方厘米,体积是()立方厘米。
A:8立方厘米 B:80立方厘米 C:0.8立方分米
小学五年级数学《体积单位间的进率》说课稿 篇四
一、说教材
体积单位间的进率是人教版第十册数学课本的内容,这部分内容是在学生已经学习了长度单位、面积单位和体积单位间的进率以及掌握了长方体和正方体体积的计算方法的基础上进行教学的。通过复习长度单位米、分米和厘米相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米相邻单位间的进率关系,建立相邻体积单位的进率之间的关系。首先出示了一个的正方体,一个棱长为1分米,再出示一个棱长为10厘米。让学生分别算一算它们的体积。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,教材则放手让学生根据前面探索中得到的经验自主进行探索得出1立方米=1000立方分米。最后通过例3和例4的教学,让学生初步尝试应用相邻体积单位间的进率进行不同体积单位的换算。自主探索、合作交流是学生学习数学的重要方式。这堂课我设计了让学生主动参与的学习过程,让学生通过计算、自主探索、合作交流等活动,掌握了数学知识,提高了数学能力。
二、说教学目标
通过本节课的教学,主要达到以下目标:
①通过计算、比较、分析、归纳,使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,理解和掌握相邻的两个体积单位之间的进率是1000的道理。
②会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握它们相邻两个单位间的进率,并能正确应用体积单位间的进率进行名数的转化。
③在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力。
④使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。
三、说教学重点与难点
教学重点:使学生理解和掌握相邻体积单位间的进率是1000,并能正确地进行体积单位间的互化。
教学难点:通过计算、比较、分析、归纳,使学生能探究出相邻体积单位间的进率是1000。
四、说教法和学法
现在教学的目标不是使学生“学会”,而是让学生“会学”,也就是通过课堂教学教给学生正确科学的学习方法,培养其良好的学习习惯。
根据教材的特点和学生的实际,本节课的教学我准备运用谈话法、观察法、比较法、分析法、讨论法等多种教学方法,结合教材引导学生观察、比较、分析、计算、概括出邻体积单位之间的进率是1000,教给学生发现、探索新知的方法,使学生深刻地理解体积单位间进率的来龙去脉,以达到预期的教学目标。
五、说教学程序
这节课我分四个层次进行教学。
一、复习铺垫,引入新课
1、常用的长度单位有哪些?相邻的两个单位间的进率是多少?
板书:1米=10分米 1分米=10厘米
2、常用的面积单位有哪些?相邻的两个单位间的进率是多少?
板书:1平方米=100平方分米 1平方分米=100平方厘米
3、填空,并说明算法和算理。
①6米=()分米=()厘米
5平方米=()平方分米=()平方厘米
算法:进率×高级单位的数
②700厘米=( )分米=( )米
800平方厘米=()平方分米
算法:低级单位的数÷进率
4、我们已经认识了哪些体积单位?这些相邻体积单位间的进率各是多少?今天这节课我们就一起来探究这个问题。
(板书课题:体积单位之间的进率)
板书:立方米 立方分米 立方厘米
【设计意图:从学生已有的知识经验出发展开教学,有利于学生认知结构的形成。】
二、探究新知
1、推导立方分米和立方厘米间的进率。
课件出示:棱长是1分米的正方体的体积是多少?
1×1×1=1(立方分米)
师:因为1分米=10厘米,如果把棱长1分米改写成10厘米,那么这个正方体的体积又是多少呢?(课件出示:棱长是10厘米的正方体)
学生计算:10×10×10=1000(立方厘米)
师:同一个正方体,它的体积可以用1立方分米或者1000立方厘米来表示,说明这两者之间有怎样的关系呢?
引导学生比较总结出:
板书:1立方分米=1000立方厘米
2、推导立方米与立方分米的进率
师:仿照上面的方法你能推算1立方米等于多少立方分米?
棱长是1米的正方体的体积是1立方米。而1米=10分米,所以棱长是1米的正方体可以划分成1000个棱长是1分米的小正方体,即1立方米=1000立方分米。
学生计算:10×10×10=1000(立方分米)
板书:1
立方米=1000立方分米
3、师:你能用一句话来概括每相邻两个体积单位之间的进率吗?
师生交流总结:每相邻两个体积单位之间的进率是1000。
4、思考:1立方米等于多少立方厘米呢?
板书:1立方米=1000000立方厘米
【设计意图:学生通过计算,自主探索得出1立方分米=1000立方厘米;同时及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。】
5、比较相邻长度单位、面积单位、体积单位之间的进率关系
单位名称 相邻两个单位间的.进率
长度单位 米、分米、厘米 10
面积单位 平方米、平方分米、平方厘米 100
体积单位 立方米、立方分米、立方厘米 1000
【设计意图:通过比较,使学生进一步明确长度单位、面积单位、体积单位这三者每相邻两个单位间的进率是不同的,即长度十、面积百、体积千,加强学生的理解与掌握。】
6、体积单位的互化
师:我们已经学习了长度单位,面积单位的转化。从高级单位、低级单位之间的转化是怎样进行让学生相互说说后,教师指出:体积单位间的转化与我们学过的长度单位,面积单位的换算的方法相同。
①出示教学例3
3.8立方米=()立方分米2400立方厘米=()立方米
让学生试一试!
教师提示:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?
想:因为方米=1000立方分米,所以1000×3.8=3800。
3.8立方米(=3800)立方分米
想:因为立方米=1000立方分米,所以2400÷1000=2.4。
2400立方厘米=(2.4)立方分米
师:请对比例3的这两道小题有什么不同?
板书:
高级单位→低级单位,用进率×高级单位的数
低级单位→高级单位,用低级单位的数÷进率
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
【设计意图:突出学生的独立思考和概括能力的培养.体积单位名数的改写虽然是新知,但是学生已有长度单位、面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,突出学生学习的主体作用,学生在尝试做了几道题的基础上概括出解题的一般方法,提高学生运用旧知识解决新问题的能力。】
②教学例4
课件出示:一个牛奶包装箱上的尺寸:50×30×40。这个牛奶包装箱的体积是多少立方米?
教师提示:箱上的尺寸一般是这个长方体的长、宽、高。(单位:厘米)
学生独立解决可能有两种方法:
(1)先算出用立方厘米作单位的数,再改写成用立方米作单位。
(2)先把厘米数改写成用米作单位的数,算出体积,就是立方米作单位了。
50厘米=0.5米30厘米=0.3米40厘米=0.4米
方法一:V=abh=0.5×0.3×0.4=0.06(立方米)
方法二:V=abh=50×30×40=60000(立方厘米)=60(立方分米)=0.06(立方米)
【组织学生先自主读题,并进行仔细审题,交流题目的意思,交流解决的方法。适当培养学生的分析能力,养成仔细审题的良好习惯。对于这两种方法,组织学生进行比较,可以进一步验证相邻体积单位间的进率是1000,发展和提高学生解决问题的能力。】
三、巩固练习
1、口答,说出计算过程。
1.02立方米=()立方分米980立方厘米=()立方分米
68立方分米=()立方厘米2090立方厘米=()立方分米
0.55立方米=()立方分米8.63立方米=()立方分米
0.6立方米=()立方分米 1200平方分米=()平方米
2.8米=()分米60厘米=()分米
2、一块长方体钢板长2.5米,宽1.6米,厚0.03米.它的体积是多少立方分米?
【设计意图:巩固练习是课堂教学的重要环节,是新知识的补充和延伸,是形成知识结构和发展能力的重要过程。通过单位换算的对比练习,使学生进一步掌握体积单位间的进率,进一步掌握体积单位的换算方法,同时沟通长度单位、面积单位和体积单位的联系和区别,加深对这些单位意义的理解。】
四、课堂总结
通过这节课的学习,你有什么收获?
【设计意图:训练学生的语言表达能力,培养学生归纳概括的能力。】