高三数学教学工作计划范文教学进度表(精简3篇)
高三数学教学工作计划范文教学进度表 篇一
标题:高三数学教学工作计划范文教学进度表
教学进度表
课时安排与教学内容
第一周
- 复习基础知识,巩固高二数学的基本概念和运算法则
- 引入高三数学的重要概念,如函数、导数和积分的初步认识
第二周
- 进一步学习函数的性质与图像变换
- 掌握函数的平移、反射和伸缩等变换,理解函数的图像与函数的性质之间的关系
第三周
- 学习函数的极限与连续性
- 理解函数极限的概念,掌握使用极限定义函数的连续性
第四周
- 学习函数的导数与微分
- 掌握导数的定义和计算方法,理解导数与函数的变化趋势之间的关系
第五周
- 学习函数的应用,如最值、最速下降和最速上升问题等
- 掌握应用题的解题思路和方法,培养解决实际问题的能力
第六周
- 学习函数的积分与定积分
- 理解积分的概念和计算方法,掌握定积分的性质和应用
第七周
- 复习前面的知识点,进行综合训练和解题技巧的讲解
- 强化学生的基本功,提高解题的速度和准确度
第八周
- 进行模拟考试,检测学生对前面知识的掌握情况和解题能力
- 分析学生的考试成绩,发现问题并进行针对性辅导
第九周
- 复习前面的知识点,进行错题集讲解和答疑解惑
- 强化学生对容易出错知识点的理解和掌握
第十周
- 进行第二次模拟考试,检测学生的提高情况
- 分析学生的考试成绩,总结问题并进行进一步的指导和辅导
第十一周
- 进行知识点的巩固与拓展,引入高考的考查要点和解题技巧
- 提高学生的考试能力,培养应试技巧和策略
第十二周
- 进行第三次模拟考试,检测学生对知识的掌握情况和解题能力
- 分析学生的考试成绩,总结问题并进行个别辅导和指导
第十三周
- 复习全年的知识点,进行综合训练和解题技巧的讲解
- 强化学生的综合能力,提高解题的速度和准确度
第十四周
- 进行全面复习,复习重要知识点和考试要点
- 进行真题讲解和解题技巧的讲解,提高学生的解题能力和应变能力
第十五周
- 进行模拟考试,检测学生对全年知识的掌握情况和解题能力
- 分析学生的考试成绩,总结问题并进行个别辅导和指导
第十六周
- 复习全年知识点,进行综合训练和解题技巧的巩固
- 强化学生的考试能力,提高解题的速度和准确度
第十七周
- 进行全面复习,巩固重要知识点和考试要点
- 进行真题讲解和解题技巧的讲解,提高学生的解题能力和应变能力
第十八周
- 进行模拟考试,检测学生对全年知识的掌握情况和解题能力
- 分析学生的考试成绩,总结问题并进行个别辅导和指导
以上是我为高三数学教学工作制定的教学进度表,通过合理的安排和有针对性的教学内容,我相信学生们在这一学期能够系统地学习和掌握数学知识,并在高考中取得优异的成绩。
高三数学教学工作计划范文教学进度表 篇二
标题:高三数学教学工作计划范文教学进度表
教学进度表
课时安排与教学内容
第一周
- 复习高二数学的基本知识,巩固基础概念和运算法则
- 引入高三数学的重要概念,如函数、导数和积分的初步认识
第二周
- 进一步学习函数的性质与图像变换
- 掌握函数的平移、反射和伸缩等变换,理解函数的图像与函数的性质之间的关系
第三周
- 学习函数的极限与连续性
- 理解函数极限的概念,掌握使用极限定义函数的连续性
第四周
- 学习函数的导数与微分
- 掌握导数的定义和计算方法,理解导数与函数的变化趋势之间的关系
第五周
- 学习函数的应用,如最值、最速下降和最速上升问题等
- 掌握应用题的解题思路和方法,培养解决实际问题的能力
第六周
- 学习函数的积分与定积分
- 理解积分的概念和计算方法,掌握定积分的性质和应用
第七周
- 复习前面的知识点,进行综合训练和解题技巧的讲解
- 强化学生的基本功,提高解题的速度和准确度
第八周
- 进行模拟考试,检测学生对前面知识的掌握情况和解题能力
- 分析学生的考试成绩,发现问题并进行针对性辅导
第九周
- 复习前面的知识点,进行错题集讲解和答疑解惑
- 强化学生对容易出错知识点的理解和掌握
第十周
- 进行第二次模拟考试,检测学生的提高情况
- 分析学生的考试成绩,总结问题并进行进一步的指导和辅导
第十一周
- 进行知识点的巩固与拓展,引入高考的考查要点和解题技巧
- 提高学生的考试能力,培养应试技巧和策略
第十二周
- 进行第三次模拟考试,检测学生对知识的掌握情况和解题能力
- 分析学生的考试成绩,总结问题并进行个别辅导和指导
第十三周
- 复习全年的知识点,进行综合训练和解题技巧的讲解
- 强化学生的综合能力,提高解题的速度和准确度
第十四周
- 进行全面复习,复习重要知识点和考试要点
- 进行真题讲解和解题技巧的讲解,提高学生的解题能力和应变能力
第十五周
- 进行模拟考试,检测学生对全年知识的掌握情况和解题能力
- 分析学生的考试成绩,总结问题并进行个别辅导和指导
第十六周
- 复习全年知识点,进行综合训练和解题技巧的巩固
- 强化学生的考试能力,提高解题的速度和准确度
第十七周
- 进行全面复习,巩固重要知识点和考试要点
- 进行真题讲解和解题技巧的讲解,提高学生的解题能力和应变能力
第十八周
- 进行模拟考试,检测学生对全年知识的掌握情况和解题能力
- 分析学生的考试成绩,总结问题并进行个别辅导和指导
以上是我为高三数学教学工作制定的教学进度表,通过合理的安排和有针对性的教学内容,我相信学生们在这一学期能够系统地学习和掌握数学知识,并在高考中取得优异的成绩。
高三数学教学工作计划范文教学进度表 篇三
导语:高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用 存在较大的问题。第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期!以下是大学网unjs.com小编整理的高三数学教学工作计划范文教学进度表,欢迎阅读参考!
高三数学教学工作计划范文
一、学生基本情况:
175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。
二、高考要求
1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。
2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。
3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。
4、注重应用题的考查,2002年文科试题应用有3道题,共28分。
5、注重学生创新意识的考查,注重学生创造能力的考查。
三、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:
基础练习 → 典型例题 → 作业 → 课后检查
(1) 基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。
(2) 典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生
能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4 为综合题,培养学生运用数学思想方法分析问题解决问题的能力。(3) 作业:本节课的基础问题,典型问题及下一节课的预习题。
(4) 课后检查;重点检查改错本及复习资料上的作业。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5、发挥集体的力量,共同培养尖子学生。
6、加强文科数学教学辅导的力度,坚持每周有针对性地集体辅导一次,建议学校文科数学每周多开一节课(即每周7节)。
四、教学进度详细安排:
1、函数(共11课时)(8月9日结束)
(1) 函数的单调性(2课时)
(2) 函数的图象(2课时)
(3) 二次函数(2课时)
(4) 函数的奇偶性(1课时)
(5) 函数章考(4课时)
2、三角函数(共30课时)(9月15日结束)
(1) 任意角的三角函数(1)
(2) 同角三角函数的基本关系(1)
(3) 诱导公式(1)
(4) 三角函数的图象(2)
(5) 三角函数的定义域、值域和最值(2)
(6) 三角函数的奇偶性、单调性(1)
(7) 三角函数的周期性(1)
(8) 两角和差的正、余弦公式(1)
(9) 倍角公式、万能公式(2)
(10)和积互化公式(1)
(11)三角函数的化简与求值(3)
(12)三角恒等式的证明(1)
(13)条件恒等式的证明(1)
(14)三角形的求值与证明(3)
(15)解斜三角形(2)
(16)三角不等式(1)
(17)三角函数的最值(2)
(18)反三角函数的概念、图像及性质(1)
(19)反三角函数的运算(2)
(20)最简单的三角方程(1)
(21)单元考试(4)
3、不等式(共24课时)(10月13日)
(1) 不等式的概念与性质(1课时)
(2) 不等式的证明(比较法)(1课时)
(3) 不等式的证明(分析法、综合法)(1课时)
(4) 应用均值不等式证明不等式(2课时)
(5) 不等式的证明(反证法、数学归纳法)(3课时)
(6) 一元一次不等式、一元二次不等式的解法(1课时)
(7) 分式不等式的解法(1课时)
(8) 无理不等式的解法(1课时)
(9) 含绝对值不等式的解法(1课时)
(10)指对不等式的解法(2课时)
(11)含参不等式的解法(3课时)
(12)均值不等式的应用(2)
(13)应用不等式求范围(2)
(14)章考(4课时)
(15)月考及讲评(4天)
4、数列、极限、数学归纳法(共20课时)(11月13日)
(1) 数列的通项(2课时)
(2) 等差数列(2课时)
(3) 等比数列(2课时)
(4) 综合运用(2课时)
(5) 数列的求和(3课时)
(6) 数列的极限(1课时)
(7) 数学归纳法(4课时)
(8) 归纳、猜想、证明(1课时)
(9) 章考(3课时)
(10)月考及讲评(4天)
5、复数(共15课时)(11月27日)
(1) 复数的概念(2课时)
(2) 复数的代数形式及运算(2课时)
(3) 复数的三角形式(1课时)
(4) 复数的三角形式的运算(2课时)
(5) 复数的加减法的几何意义(1课时)
(6) 复数的乘除法的几何意义(2课时)
(7) 复数集上的方程(2课时)
(8) 复数集上的方程(1课时)
(9) 章考(2课时)
6、排列、组合、二项式定理(共11课时)(12月1日)
(1) 两个基本原理(1课时)
(2) 排列、组合数公式(1)
(3) 排列应用题(1)
(4) 组合应用题(1)
(5) 排列、组合综合应用题(2)
(6) 二项式定理(3)
(7) 章考(2课时)
(8) 月考及讲评(4天)
7、直线与平面(共20课时)(12月24日)
(1) 平面及其基本性质(1课时)
(2) 空间的两条直线(1课时)
(3) 直线与平面(1课时)
(4) 平面与平面(1课时)
(5) 三垂线定理及逆定理(2课时)
(6) 平行间的转化(2课时)
(7) 垂直间的转化(2课时)
(8) 空间角(3课时)
(9) 空间距离(2课时)
(10)章考(3课时)
(11)月考及讲评(4天)
8、多面体与旋转体(共7课时)(12月31日)
(1) 柱体(1课时)
(2) 锥体(1课时)
(3) 台体(1课时)
(4) 球(1课时)
(5) 侧面张开图(1课时)
(6) 折叠问题(1课时)
(7) 体积问题(1课时)
(8) 自测
9、直线与圆(共10课时)(1月12日)
(1) 向线段与定比分点(1)
(2) 直线方程的几种形式(2)
(3) 两直线的位置关系(1)
(4) 对称为题(1)
(5) 圆的方程(1)
(6) 直线与圆的位置关系(2)
(7) 章考(2课时)
(8) 月考及讲评(4天)
10、 圆锥曲线(共21课时)(2月4日)
(1) 充要条件(1)
(2) 椭圆(1)
(3) 双曲线(1)
(4) 抛物线(1)
(5) 坐标平移(2)
(6) 弦问题(4)
(7) 轨迹的求法(4)
(8) 最值问题(2)
(9) 取值范围问题(2)
(10)章考(3课时)
11、 参数方程、极坐标(共5课时)(2月10日)
(1) 直线的参数方程及应用(2)
(2) 圆锥曲线的参数方程(1)
(3) 直线与圆的极坐标方程(2)
五、周练安排
1、出题安排
(1) 第2、5、8、11、14、17、20周
(2) 第3、6、9、12、15、18、21周
(3) 第4、7、10、13、16、19、22周
2、注意事项
每周星期一以前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。
六、过关题、典型题
1、出题安排
(1) 三角函数
(2) 不等式
(3) 数 列
(4) 复数、排列组合、二项式定理
(5) 立体几何
(6) 解析几何
2、注意事项
每章结束以前一周出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。
七、章考命题负责人
1、出题安排
(1) 三角函数
(2) 不等式
(3) 数 列 (4) 复数、排列组合、二项式定理
(5) 立体几何
(6) 解析几何
2、注意事项
每次考前出好试题,交备课组讨论,定稿后负责印好试卷,分发到班。
八、月考命题负责人
1、出题安排
(1) 第一次月考
(2) 第二次月考
(3) 第三次月考
(4) 第四次月考
(5) 第五次月考
2、每次月考前一周出好试题,交备课组讨论,负责定稿交好试卷。
高三数学教学工作计划范文
一、指导思想
以学校工作思路和各处室工作计划为指导,明确目标,同心协力,争创佳绩。
二、高考要求分析
1、高考对数学的考查以知识为载体,着重思维能力、运算能力、空间想象能力、创新意识、实践能力。
2、 明确提出个性品质要求:要求学生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,具有审慎思维的习惯,体会数学的美学意义.要求 考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
3、 运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是算理和逻辑推理的考查,以含字母的式的运算为主. 空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个 过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难 度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自 觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.高考试题注重区分度,同一试题,大多没有繁杂 的运算,且解法较多,不同层次的学生有不同的解法。
4、 数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值.同时兼顾试题的基础性、 综合性和现实性,重视试题的层次性,合理调控综合程度.坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求
5、 创新意识和创造能力是理性思维的高层次表现.在数学学习和研究过程中.知识的迁移、组合、融汇的程度越高.展示能力的区域就越宽泛,显现出的创造意识也就 越强.命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目.让考生独立思 考,自主探索,发挥主观能动性,研究问题的本质,寻求合适的解题工具.梳理解题程度,为考生展现其创新意识发挥创造能力创设广阔的空间
三、教学措施
△备课
1、积极探索符合学生实际的复习教学模式。
2、结合新大纲、考纲,根据教学实际,制定出切实可行的教学计划。计划的制定要体现“两结合”:总体计划与阶段计划相结合,新授计划与复习计划相结合。
3、明确各轮复习的常规要求。
本 学期完成第一轮复习,第一轮复习要求各科要坚持基础性、系统性、全面性、全体性、层次性的原则。在构建学科知道体系同时还要兼顾能力渗透。主要突出重点, 抓住关键,突破难点,练要讲求效果,克服简单重复。以一本资料为主,注意各种高考知识点的全面复习和梳理,常见题型解题方法的理解和掌握,扎扎实实地夯实 基础。第一轮复习以“看、讲、练、评”的形式进行,抓好高考各考点的学习,重在夯实基础。
4、备课要做到 “五备”:备大纲、备教材、备学生、备教法、备学法;同层次的班级做到“五统”:统一计划、统一进度、统一练习、统一资料、统一测试。
5、认真研究考纲,各学科研究高考侧重以下几个方面。
①历年试题整体研究——找共性;
②近年试题重点研究——找趋势;
③相同试题对比研究——找变化;
④不同试题分类研究——找差别;
⑤外省试题集中研究——找新意、找动态。
△上课
1、坚决贯彻“教师为主导、学生为主体、训练为主线”的教学原则实施高三复习课教学。
2、优化课堂教学结构,做到讲练结合,要防止满堂灌、上课简单对答案、没有重点要点的错误做法。
3、努力提高课堂效益,严防三个误区:以讲为懂,以懂为会,以会为通。要在复习讲授的过程中重视学生的积极参与,要加强训练、运用,要让学生对所讲所练的内容进行思考,领悟、消化、反思、订正。
4、注重把握复习课的深度和广度。该讲就讲,该舍就舍,确保复习的针对性和有效性。
5、要加强练习与测试,要使练习数达到一定的量,所下发的各种练习必须完成,但要防止题海战术。
6、练习测试要及时批改,认真统计分析,讲评突出重点,重点学生力求面批到位。
7、 试卷讲评要注意四个程序:一查,二统,三找,四改。一查即查每次考试目的;二统,即数据统计的数量分析;三找,即找出学生出现的知识错误及引出错误的原 因;;四改,即制定改进措施。讲评尽量做到要及时,注意保护学生的学习积极性,有针对性,有辐射性,有指导性,有诊断性。
△检查
1、进行自查,教师对自己每上一堂课要进行自我分析检查,检查自己的备课状况,检查自己上课中对学生、对课堂的驾驭情况,要不断进行反思,根据学校要求,有自己的教后记(或教学建议)。
2、加强对学生的情况检查,要善于通过检查对学生的水平进行评估,要善于搞好单元过关和查漏补缺。
3、要自觉接受学校的教学常规检查。
△辅导
1、实行任课教师重点学生负责制。
2、根据不同情况,采取多种多样的补差模式。
3、补差工作要体现立体化、全方位的特点。遵循“先查病,后治疗,再进补”的原则,做到“三补五多”,即补态度、补方法、补知识,课堂多提问,课后多辅导,平时多谈心,练习多面批,方法多指导。
4、每次重大考试及时做好质量分析工作,排找差距,分析原因,及时整改。
序号
内 容
课时
预计上课时间
1
集合及其应用
4
九月
2
绝对值不等式,一元一次、一元二次不等式的解法。
4
3
简易逻辑、充要条件
4
4
映射与函数的概念
4
5
函数的图像
2
6
函数的性质
4
7
函数的值域、极值与最值
2
8
函数最值的应用
2
9
二次函数及其应用
4
10
指数、对数运算
2
11
指数、对数函数
2
十月
12
函数的综合与应用问题
4
13
数列的概念与方法
2
14
数列的求和方法
2
15
等差、等比数列的公式与方法
2
16
等差、等比数列的公式与应用
2
17
数学归纳法及其应用归纳-猜想-证明
2
18
数列的综合与应用问题
2
19
任意角的三角函数
2
20
三角函数的性质与图像
4
21
三角式变换的公式、方法与技巧
8
十一月
22
三角的综合与应用问题
2
23
向量及性质
2
24
向量的运算应用
2
25
向量的平行、垂直、夹角与长度
2
26
定比分点和平移
2
27
解斜三角形
2
28
不等式性质
2
29
不等式解法
4
30
不等式证明的综合法
4
31
不等式的综合与应用
4
十二月
32
直线方程
6
33
简单线性规划
2
34
圆方程
2
35
直线与圆
2
36
圆锥曲线方程与性质
6
37
直线与圆锥曲线
4
38
解析几何轨迹问题
2
39
解析几何对称问题
2
40
解析几何最值问题
2
41
立体几何的基础知识与立几证明问题
10
元月
42
立几计算问题的基本方法
4
43
空间距离的计算问题
2
44
空间角的计算问题
2
45
体积、面积计算问题
2
46
立体几何的综合问题
6
47
排列、组合的概念与公式
2
48
排列、组合问题的各类型与方法
4
49
二项式定理及应用
4
50
随机事件的概率
2
二月
51
互斥事件有一个发生的概率
2
高三数学教学工作计划范文
一、指导思想
高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用 存在较大的问题。第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.
“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试说明》、《考题》理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”. 二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检 测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检 测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.
二、时间安排:
1.第一阶段一轮收尾以及训练高考大演练模拟题。时间为2月20——3月16日。
2.第二阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月20——4月20日。
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为4月20日——5月20日。
4.最后阶段学生自我检查阶段,查漏补缺。时间为5月20日——6月5日。
三、怎样上好第二轮复习课的几点建议:
(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2007-2009全国课改新高考试题.
第二轮复习的形式和内容
1.形式及内容:分专题的形式,具体而言有以下八个专题。
(1)集合、函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。此专题中解析几何是重点,以基本性质、基本运算为目标。突出直线和圆锥曲线的交点、弦长、轨迹等。
(6)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。
(7)概率与统计、算法初步、复数。此专题中概率统计是重点,以摸球问题为背景理解概率问题。
(8)极坐标与参数方程。
(9)高考数学思想方法专题。此专题 中函数与方程、数形结合、化归与转化、分类讨论思想方法是重点。
(二)、做到四个转变。
1.变介绍方法为选择方法,突出解法的发现和运用.
2.变全面覆盖为重点讲练,突出高考“热点”问题.
3.变以量为主为以质取胜,突出讲练落实.
4.变以“补弱”为主为“扬长补弱”并举,突出因材施教
5.做好六个“重在”。 重在解题思想的分析,即在复习中要及时将四种常见的数学思想渗透到解题中去;重在知识要点的梳理,即第二轮复习不像第一轮复习,没有必要将每一个知识点都 讲到,但是要将重要的知识点用较多的时间重点讲评,及时梳理;重在解题方法的总结,即在讲评试题中关联的解题方法要给学生归类、总结,以达触类旁通的效 果;重在学科特点的提炼,数学以概念性强,充满思辨性,量化突出,解法多样,应用广泛为特点,在复习中要展现提炼这些特点;重在规范解法的示范,有些学生 在平时的解题那怕是考试中很少注意书写规范,而高考是分步给分,书写不规范,逻辑不连贯会让学生把本应该得的分丢了,因此教师在复习中有必要作一些示范性 的解答。
(三)、克服六种偏向。
1.克服难题过多,起点过高.复习集中几个难点,讲练耗时过多,不但基础没夯实,而且能力也上不去.
2.克服速度过快.内容多,时间短,未做先讲或讲而不做,一知半解,题目虽练习,却仍不会做.
3.克服只练不讲.教师不选范例,不指导,忙于选题复印.
4.克服照抄照搬.对外来资料、试题,不加选择,整套搬用,题目重复,针对性不强.
5.克服集体力量不够.备课组不调查学情,不研究学生,对某些影响教与学的现象抓不住或抓不准,教师“头头是道,夸夸其谈”,学生“心烦意乱”.不研究高考,复习方向出现了偏差.
6.克服高原现象.第二轮复习“大考”、“小考”不断,次数过多,难度偏大,成绩不理想;形成了心理障碍;或量大题不难,学生忙于应付,被动做题,兴趣下降,思维呆滞.
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、失分点、模糊点,剖析根源,彻底矫正。
四、在第二轮复习过程中,我们安排如下:
1. 继续抓好集体备课。每周一次的集体备课必须抓落实,发挥集体智慧的力量研究数学高考的动向,学习与研究《考试说明》,比较新、旧《考试说明》的差异,注意那些内容降低要求,那些内容成为新的高考热点,每周一次研究课。
2.安排好复习内容。
3.精选试题,命题审核。
4.测试评讲,滚动训练。
5.精讲精练:以中等题为主。
[高三数学教学工作计划范文教学进度表]