七年级上册数学知识点总结(通用6篇)

七年级上册数学知识点总结 篇一

在七年级上册的数学学习中,我们学习了许多重要的知识点,这些知识点为我们打下了数学学习的基础。下面我将对这些知识点进行总结。

首先是整数的概念和运算。整数包括正整数、负整数和0,我们学会了整数的加减法、乘法和除法。在运算过程中,我们要注意正负数的运算规则,即同号相加为正,异号相加为负。

其次是平方根和立方根的概念。平方根是指一个数的平方等于给定数的非负实数解,立方根是指一个数的立方等于给定数的实数解。我们学会了如何计算平方根和立方根,并且了解了它们在实际生活中的应用。

接下来是比例和比例的应用。比例是指两个或多个量之间的等量关系,学习比例的应用可以帮助我们解决实际生活中的问题,例如比例尺、利润分成等。

然后是百分数和百分数的应用。百分数是将一个数表示为百分之几的形式,我们学会了如何将分数和小数转化为百分数,以及如何进行百分数的加减乘除运算。百分数在商业活动、统计数据等方面有着广泛的应用。

此外,我们还学习了平行线与垂直线、三角形的性质、相似三角形等几何知识。通过学习这些知识,我们能够判断线段是否平行或垂直,了解三角形的内角和外角之间的关系,以及判断三角形是否相似等。

最后是函数的概念和函数图像的绘制。函数是两个集合之间的对应关系,我们学会了如何通过给定的函数表达式绘制函数图像,并且能够根据函数图像判断函数的性质。

通过七年级上册的学习,我们对数学的基本概念和运算规则有了更深入的理解,掌握了一些常用的数学工具和方法。这些知识将为我们在以后的学习中打下坚实的基础,帮助我们更好地理解和应用数学。

七年级上册数学知识点总结 篇二

七年级上册的数学学习内容丰富多样,其中包括了一些重要的知识点。下面我将对这些知识点进行总结。

首先是有理数的概念和运算。有理数包括整数和分数,我们学会了有理数的加减乘除运算,并且掌握了有理数的大小比较方法。有理数的运算在解决实际问题中起到了重要的作用。

其次是代数式的概念和运算。代数式是由数、字母和运算符号组成的式子,我们学会了代数式的加减乘除运算,并且掌握了一些常见的代数式的运算规律,如分配律、合并同类项等。

接下来是一元一次方程的概念和解法。一元一次方程是指只含有一个未知数的一次方程,我们学会了如何解一元一次方程,包括使用逆运算、去分母、合并同类项等方法。

然后是图形的识别和性质。我们学习了如何识别几何图形,包括点、线、面等基本图形,以及如何判断图形的性质,如平行线、垂直线、对称图形等。

此外,我们还学习了统计与概率的基本概念和方法。统计是研究收集、整理、分析和解释数据的学科,我们学会了如何进行数据的收集和整理,并且学习了一些统计图表的绘制方法。概率是研究随机事件发生可能性的学科,我们学会了如何计算概率,并且了解了概率在生活中的应用。

最后是函数与方程的关系。函数是一个集合和一个集合之间的对应关系,方程是一个等式,我们学会了如何通过给定的函数关系求解方程,以及如何通过给定的方程确定函数关系。

通过七年级上册的学习,我们对数学的基本概念和运算规则有了更深入的理解,掌握了一些常用的数学工具和方法。这些知识将为我们在以后的学习中打下坚实的基础,帮助我们更好地理解和应用数学。

七年级上册数学知识点总结 篇三

  第一章 有理数

  1.1正数和负数

  ①把0以外的数分为正数和负数。0是正数与负数的分界。

  ②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

  1.2有理数

  1.2.1有理数

  ①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  ②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。

  1.2.2数轴

  ①具有原点,正方向,单位长度的直线叫数轴。

  1.2.3相反数

  ①只有符号不同的数叫相反数。

  ②0的相反数是0 正数的相反数是负数 负数的相反数是正数

  1.2.4绝对值

  ①绝对值 |a|

  ②性质:正数的绝对值是它的本身

  负数的绝对值的它的相反数

  0的绝对值的0

  1.2.5数的大小比较

  ①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  ②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  ①同号两数相加,取相同的符号,并把绝对值相加。

  ②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  ③一个数同0相加,仍得这个数。

  ④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  ⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b

  1.3.2有理数的减法

  ①减去一个数,等于加这个数的相反数。a-b=a+(-b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  ①两数相乘,同号得正,异号的负,并把绝对值相乘。

  ②任何数同0相乘,都得0。

  ③乘积是1的两个数互为倒数。

  ④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。

  ⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba

  ⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b

  ⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

  1.4.2有理数的除法

  ①除以一个不等0的数,等于乘以这个数的倒数。

  ②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

  ③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  ④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。

  1.5有理数的乘方

  1.5.1乘方

  ①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。

  ②负数的奇次幂是负数,负数的偶次幂的正数。

  ③正数的任何次幂都是正数,0的任何正整数次幂都是0。

  ④做有理数的混合运算时,应注意以下运算顺序:

  1.先乘方,再乘除,最后加减;

  2.同级运算,从左到右进行;

  3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  1.5.2科学记数法。

  ①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

  1.5.3近似数

  ①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。

  ②近似数与准确数的接近程度,可以用精确度表示。

  ③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

  第二章 整式的加减

  2.1整式

  ①单项式:表示数或字母积的式子

  ②单项式的系数:单项式中的数字因数

  ③单项式的次数:一个单项式中,所有字母的指数和

  ④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

  ⑤多项式里次数最高项的次数,叫做这个多项式的次数。

  ⑥单项式与多项式统称整式。

  2.2 整式的加减

  ①同类项:所含字母相同,而且相同字母的次数相同的单项式。

  ②把多项式中的同类项合并成一项,叫做合并同类项。

  ③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  ④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

  ⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  ⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  第三章 一元一次方程

  3.1从算式到方程

  3.1.1一元一次方程

  ①方程:含有未知数的等式

  ②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。

  ③方程的解:使方程中等号左右两边相等的未知数的值

  ④求方程解的过程叫做解方程。

  ⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  3.1.2等式的性质

  ①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  ②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  3.2解一元一次方程(—)合并同类项与移项

  ①把等式一边的某项变号后移到另一边,叫做移项。

  3.3解一元一次方程(二) 去括号与去分母

  ①一般步骤:1.去分母

  2.去括号

  3.移项

  4.合并同类项

  5.系数化为一

  3.4实际问题与一元一次方程

  利用方程不仅能求具体数值,而且可以进行推理判断。

  第四章 图形认识初步

  4.1多姿多彩的图形

  4.1.1几何图形

  ①把实物中抽象出的各种图形统称为几何图形。

  ②几何图形的各部分不都在同一平面内,是立体图形。

  ③有些几何图形的各部分都在同一平面内,它们是平面图形。

  ④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。

  ⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

  4.1.2点,线,面,体

  ①几何体也简称体。

  ②包围着体的是面。面有平的面和曲的面两种。

  ③面和面相交的地方形成线。(线有直线和曲线)

  ④线和线相交的地方是点。(点无大小之分)

  ⑤点动成线 ,线动成面,面动成体。

  ⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。

  ⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。

  ⑧线段的比较:1.目测法 2.叠合法 3.度量法

  4.2 直线,射线,线

  ①经过两点有一条直线,并且只有一条直线。

  ②两点确定一条直线。

  ③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。

  ④射线和线段都是直线的一部分。

  ⑤把线段分成相等的两部分的点叫做中点。

  ⑥两点的所有连线中,线段最短。(两点之间,线段最短)

  ⑦连接两点间的线段的长度,叫做这两点的距离。

  4.3 角

  4.3.1角

  ①角也是一种基本的几何图形。

  ②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。

  ③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

  ④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。

  ⑤以度,分,秒为单位的角的度量制,叫做角度制。

  4.3.2角的比较与运算

  ①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

  4.3.3余角和补角

  ①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

  ②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

  ③等角的补角相等。

  ④等角的余角相等。

七年级上册数学知识点总结 篇四

  代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式)

  1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。

  (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的'系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

  (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

  2、多项式

  (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

  (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

  (3)多项式的排列:

  把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  在做多项式的排列的题时注意:

  (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符

  看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a、先确认按照哪个字母的指数来排列。

  b、确定按这个字母降幂排列,还是升幂排列。

  3、整式:单项式和多项式统称为整式。

  4、列代数式的几个注意事项

  (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;

  (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。

  初中数学实数知识点

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  初中提高数学成绩诀窍

  数学不能只依靠上课听得懂

  很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

  初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

  只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

  三个重要的数学思想

  1、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。

  2、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。

  3、对应的思想。

  初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。

七年级上册数学知识点总结 篇五

  数轴

  ⒈数轴的概念

  规定了原点,正方向,单位长度的直线叫做数轴。

  注意:

  ⑴数轴是一条向两端无限延伸的直线;

  ⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;

  ⑶同一数轴上的单位长度要统一;

  ⑷数轴的三要素都是根据实际需要规定的。

  2.数轴上的点与有理数的关系

  ⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

  ⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

  3.利用数轴表示两数大小

  ⑴在数轴上数的大小比较,右边的数总比左边的数大;

  ⑵正数都大于0,负数都小于0,正数大于负数;

  ⑶两个负数比较,距离原点远的数比距离原点近的数小。

  4.数轴上特殊的(小)数

  ⑴最小的自然数是0,无的自然数;

  ⑵最小的正整数是1,无的正整数;

  ⑶的负整数是-1,无最小的负整数

  5.a可以表示什么数

  ⑴a>0表示a是正数;反之,a是正数,则a>0;

  ⑵a<0表示a是负数;反之,a是负数,则a<0

  ⑶a=0表示a是0;反之,a是0,,则a=0

七年级上册数学知识点总结 篇六

  相反数

  ⒈相反数

  只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。

  注意:

  ⑴相反数是成对出现的;

  ⑵相反数只有符号不同,若一个为正,则另一个为负;

  ⑶0的相反数是它本身;相反数为本身的数是0。

  2.相反数的性质与判定

  ⑴任何数都有相反数,且只有一个;

  ⑵0的相反数是0;

  ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0

  3.相反数的几何意义

  在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。

  4.相反数的求法

  ⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);

  ⑵求多个数的和或差的相反数时,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。化简得-5a-b);

  ⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:-5的相反数是-(-5),化简得5)

  5.相反数的表示方法

  ⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。

  当a>0时,-a<0(正数的相反数是负数)

  当a<0时,-a>0(负数的相反数是正数)

  当a=0时,-a=0,(0的相反数是0)

相关文章

铁路调度工作总结(精简6篇)

铁路调度工作总结 第一篇在领导的正确领导下,在同志们的热情帮助和大力支持下,我能够坚定信念,加强学习,提高素养,认真贯彻执行上级领导的各项指示和规定,立足本职,团结同志,认真做好车辆管理工作,主动加强...
工作总结2013-03-06
铁路调度工作总结(精简6篇)

保洁员的工作总结【推荐6篇】

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,通过它可以正确认识以往学习和工作中的优缺点,让我们好好写一份总结吧。那么我们该怎么去写总结呢?下面是小编精心整理的保洁员工作总结...
工作总结2016-09-05
保洁员的工作总结【推荐6篇】

六年级学期班务的工作总结(优秀6篇)

辛苦的工作已经告一段落了,回顾过去的工作,倍感充实,收获良多,为此要做好工作总结。那么要如何写呢?以下是小编精心整理的六年级上学期班务的工作总结范文(精选7篇),欢迎大家借鉴与参考,希望对大家有所帮助...
工作总结2014-02-03
六年级学期班务的工作总结(优秀6篇)

化工厂个人工作总结(精选6篇)

总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它能使我们及时找出错误并改正,让我们来为自己写一份总结吧。那么总结应该包括什么内容呢?以下是小编收集整理的化工厂...
工作总结2011-02-06
化工厂个人工作总结(精选6篇)

礼仪部个人工作总结(通用6篇)

礼仪部个人工作总结 第一篇幼儿是安全活动的主人,掌握一定的自我安全保护的方法,是幼儿园安全教育的重点。因此,我们将安全教育同课程相结合,开展了多种形式的安全教育活动。一、通过环境布置的渲染、安全教育活...
工作总结2014-02-09
礼仪部个人工作总结(通用6篇)

小学期末的工作总结【精选6篇】

不经意间,一段时间的工作已经结束了,经过这段时间的努力后,我们在不断的成长中得到了更多的进步,想必我们需要写好工作总结了。可是怎样写工作总结才能出彩呢?下面是小编为大家整理的有关小学期末的工作总结范文...
工作总结2015-05-09
小学期末的工作总结【精选6篇】