初一下册数学重要考点知识总结【优秀5篇】
初一下册数学重要考点知识总结 篇一
初一下册数学是学生们接触到的第一本高中数学教材,对于学生们来说,这个阶段的数学知识是非常重要的。下面,我将对初一下册数学的重要考点知识进行总结。
第一个重要考点是有理数的运算。有理数是整数和分数的统称,包括正数、负数和零。在学习有理数的运算时,首先要掌握加减乘除的基本运算规则。在加法和乘法中,两个正数相加或相乘仍为正数;两个负数相加或相乘仍为负数;正数与负数相加或相乘的结果为正数或负数,具体取决于正数和负数的个数。在减法和除法中,负数减去或除以正数的结果为负数,正数减去或除以负数的结果为正数。此外,还要掌握有理数的混合运算,即同时进行加减乘除的运算。
第二个重要考点是分数的运算。分数是一个整体的数与一个单位的数的比值,由分子和分母组成。分数的运算包括加减乘除四则运算。在加法和减法中,要求分数的分母相同,先将分数转化为相同分母的分数,然后对分子进行加减运算。在乘法中,将分数的分子相乘,分母相乘。在除法中,先将除数的分子与被除数的分母相乘,再将除数的分母与被除数的分子相乘。此外,还需掌握分数的约分和通分。
第三个重要考点是百分数的运算。百分数是以百为基数的百分之一的倍数。在求百分数的值时,需要将百分数转化为小数,然后进行计算。在求一个数的百分之几时,需要将该数转化为分数或小数,再将分数或小数化为百分数。在百分数的运算中,要掌握百分数的四则运算规则,即百分数之间的加减乘除。
第四个重要考点是平方根的计算。平方根是一个数的算术平方根,即一个数的平方等于这个数。在计算平方根时,需要利用平方根的性质,即正数的平方根是正数,负数的平方根是虚数,零的平方根是零。在计算平方根时,要掌握平方根的运算法则,即两个相同数的平方根相乘等于这个数。
以上是初一下册数学的重要考点知识总结。通过对这些重要考点的学习和掌握,可以帮助学生们更好地理解和运用数学知识,为进一步学习打下坚实的基础。
初一下册数学重要考点知识总结 篇二
初一下册数学是学生们接触到的第一本高中数学教材,对于学生们来说,这个阶段的数学知识是非常重要的。下面,我将对初一下册数学的重要考点知识进行总结。
第一个重要考点是代数式与方程式的转化。代数式是由数字、字母和运算符号组成的式子,方程式是一个等式,其中包含一个未知数。在学习代数式与方程式的转化时,首先要理解代数式与方程式的含义和关系。代数式是一种抽象的数学表达方式,方程式是通过代数式来描述数的关系。在转化代数式为方程式时,要根据题目的要求和条件,确定未知数的含义和取值范围,然后建立方程式,求解未知数。在解方程式时,要运用方程的性质和解方程的方法,如加减消元法、代入法、因式分解法等。
第二个重要考点是图形的性质与运算。在学习图形的性质与运算时,要掌握各种图形的定义、性质和分类。例如,直线是由无数个点连成的路径,具有无限延伸的性质;射线是由一个端点和一个方向组成的路径,具有起点和无限延伸的性质;线段是由两个端点和路径上的所有点组成的路径,具有有限长度的性质。此外,还要掌握图形的运算法则,如图形的平移、旋转、翻转等。
第三个重要考点是函数的概念与运算。函数是两个集合之间的一种映射关系,包括定义域、值域和对应关系。在学习函数的概念与运算时,要理解函数的含义和性质,掌握函数的定义、表示和判定方法。在函数的运算中,要掌握函数的四则运算规则,即函数之间的加、减、乘、除运算。
第四个重要考点是统计与概率的应用。统计是收集、整理、分析和解释数据的方法和过程,概率是描述随机事件发生可能性的数值。在学习统计与概率的应用时,要掌握统计的基本概念和方法,如数据的收集、整理和分析;了解概率的基本概念和计算方法,如事件的概率、样本空间和事件的计算。
以上是初一下册数学的重要考点知识总结。通过对这些重要考点的学习和掌握,可以帮助学生们更好地理解和运用数学知识,为进一步学习打下坚实的基础。
初一下册数学重要考点知识总结 篇三
平行线与相交线
一、互余、互补、对顶角
1、相加等于90°的两个角称这两个角互余。 性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。 性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。 对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。 (相邻且互补)
二、三线八角: 两直线被第三条直线所截
①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定
①同位角相等
②内错角相等 两直线平行
③同旁内角互补
四、平行线的性质
①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
五、尺规作图(用圆规和直尺作图)
①作一条线段等于已知线段。
②作一个角等于已知角。
生活中的轴对称
一、轴对称图形与轴对称
①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。
②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形
二、角平分线的性质:角平分线上的点到角两边的距离相等。
∵ ∠1=∠2 PB⊥OB PA⊥OA
∴ PB=PA
三、线段垂直平分线:
①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵ OA=OB CD⊥AB
∴ PA=PB
四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)
①等腰三角形是轴对称图形; (一条对称轴)
②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一)
③等腰三角形的两个底角相等。 (简称:等边对等角)
五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边)
六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。
① 等边三角形的三条边相等,三个角都等于60;
②等边三角形有三条对称轴。
七、轴对称的性质:
① 关于某条直线对称的两个图形是全等形;
②对应线段、对应角相等;
② 对应点的连线被对称轴垂直且平分;
④对应线段如果相交,那么交点在对称轴上。
八、镜子改变了什么:
1、物与像关于镜面成轴对称;(分清左右对称与上下对称)
2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题
三角形
一、认识三角形
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)
3、三角形的内角和是180°;直角三角形的两锐角互余。
锐角三角形 (三个角都是锐角)
4、三角形按角分类直角三角形 (有一个角是直角)
钝角三角形 (有一个角是钝角)
5、三角形的特殊线段:
a) 三角形的中线:连结顶点与对边中点的线段。 (分成的两个三角形面积相等)
b) 三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。
c) 三角形的高:顶点到对边的垂线段。 (每一种三角形的作图)
二、全等三角形:
1、全等三角形:能够重合的两个三角形。
2、全等三角形的性质:全等三角形的对应边、对应角相等。
3、全等三角形的判定:
判定方法
内 容
简称
边边边
三边对应相等的两个三角形全等
SSS
边角边
两边与这两边的夹角对应相等的两个三角形全等
SAS
角边角
两角与这两角的夹边对应相等的两个三角形全等
ASA
角角边
两角与其中一个角的对边对应相等的两个三角形全等
AAS
斜边直角边
斜边与一条直角边对应相等的两个直角三角形全等
HL
注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA
两条边与其中一条边的对角对应相等的.两个三角形不能判定两个三角三角形全等。SSA
4、全等三角形的证明思路:
条 件
下一步的思路
运用的判定方法
已经两边对应相等
找它们的夹角
SAS
找第三边
SSS
已经两角对应相等
找它们的夹边
ASA
找其中一个角的对边
AAS
已经一角一边
找另一个角
ASA或AAS
找另一边
SAS
5、三角形具有稳定性,
三、作三角形
1、已经三边作三角形
2、已经两边与它们的夹角作三角形
3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)
4、已经斜边与一条直角边作直角三角形
初一下册数学重要考点知识总结 篇四
1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an
(5)a0 (a≠0) (6)a-p= =
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2 (a-b)2
常用公式:(x+m)(x+n)=
5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
6、互为余角和互为补角和
7、两直线平行的条件:(角的关系线的平行) ①相等,两直线平行;
② 相等,两直线平行;
③ 互补,两直线平行.
8、平行线的性质:两直线平行。(线的平行
9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义
(3)图象交点表示什么意义(4)会求平均值。
11、三角形(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(重点)(6)等腰三角形:(a)知边求边、周长方法
(b)知角求角方法
(c)三线合一:
(7)等边三角形:
12、会判轴对称图形,会根据画对称图形,(或在方格中画)
13、常见的轴对称图形有:
14、
(1)等腰三角形: 对称轴, 性质
(2)线段 : 对称轴 ,性质
(3)角 : 对称轴 ,性质
15、尺规作图:(1) 作一线段等已知线段 (2)作角已知角 (3)作线段垂直平分线
(4)作角的平分线 (5)作三角形
16、事件的分类:,会求各种事件的概率
(1)摸球:P(摸某种球)=
(2)摸牌: P(摸某种牌)=
(3)转盘: P(指向某个区域)=
(4)抛骰子: P(抛出某个点数)=
(5)方格(面积): P(停留某个区域)=
17、必然事件不可能事件,不确定事件
18、方法归纳:(1)求边相等可以利用
(2)求角相等可以利用 。
(3)计算简便可以利用 。
19、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
初一下册数学重要考点知识总结 篇五
一元一次方程
一、几个概念
1.一元一次方程:
2.方程的解:使方程 的未知数的值叫方程的解。
5.移项: 叫做移项。
(切记:移项必须 )。
二、解一元一次方程的一般步骤:
①去分母——方程两边同乘各分母的
( 注意:去分母不漏乘,对分子添括号 )
② ,③ ,④ ,⑤
三、列方程(组)解应用题的一般步骤
①.设 ,②.列 ,③.解 ,④.检 ,⑤.答
第七章 二元一次方程组
一、几个概念
1.二元一次方程:
2.二元一次方程组:
3.二元一次方程组的解:使二元一次方程组的的两个未知数的值。
二、二元一次方程组的解法:
1.代入消元的条件:将一个方程化为 的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2.加减消元的条件:两个方程中,某一未知数的系数 或 。
(当两个方程中,某一未知数系数成倍数关系时,最适合)。
三、解三元一次方程组的一般步骤:
①.先用代入法或加减法消去系数较简单的一个未知数,转化为 ;
②.然后再解 ,得到两个未知数的值;
③.最后将上步所得两个未知数的值代回前边某一方程,求出另一未知数的值。
第八章 一元一次不等式
一、几个概念
1.不等式: 叫做不等式。
2.不等式的解: 叫做不等式的解。
3.不等式的解集:
5.一元一次不等式:
6.一元一次不等式组:
7.一元一次不等式组的解集:
二、一元一次不等式(组)的解法:
1.解一元一次不等式的一般步骤:
①. ,②. ,③. ,④. ,⑤.
2.怎样在数轴上表示不等式的解集:
①先定起点:有等号时用 点;无等号时用 点。
②再画范围:小于号向 画;大于号向 画。
3.一元一次不等式组的解法:
先分别求 ;再求
4.注意:
①.在不等式两边同时乘或除以负数时, 不等号必须
②.求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:
同大取 ,同小取 ;“大小,小大”取 ,“大大,小小”则
第九章 多边形
一、几个概念
1.三角形的有关概念:
①三角形:是由三条不在同一直线上的 组成的平面
图形,这三条 就是三角形的边。
以A、B、C为顶点的三角形记为 。
②三角形的内角:
③三角形的外角:
5.正多边形:
二、多边形的边、角间关系:
1.三角形角间关系:①.内角和为 ;
②.外角等于 ;
③.外角大于 ;
④.三角形的外角和为 。
2.三角形边间关系: < 第三边 <
3. n边形的内角和等于 ,外角和等于 。
三、用正多边形拼地板
1.用正多边形铺满平面的条件:
围绕一点拼在一起的几个 加在一起恰好组成一个
2.用相同正多边形铺满平面的条件是:360是正多边形一个内角度数的
3.用不同正多边形铺满平面的条件是:拼接点周围各正多边形一个内角的和为
第十章 轴对称、平移与旋转
一、轴对称:
1.轴对称图形:如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 。
2.两个图形成轴对称:如果一个图形沿一条直线折叠后,它能与另一个图形,那么这两个图形成 ,这条直线就是它们的 ,折叠时重合的对应点就是
3.轴对称的性质:轴对称(成轴对称的两个)图形的对应线段 ,对应角
4.垂直平分线的定义:
5.对称轴的画法:先连结一对 点,再作所连线段的
6.对称点的画法:过已知点作对称轴的 并
二、平移
图形的平移:一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为 ,它是由移动的 和 所决定。
平移的特征:经过平移后的图形与原图形对应线段 (或在同一直线上)且 ,对应角 ,图形的 与 都没有发生变化,即平移前后的两个图形连结每对对应点所得的线段 (或在同一直线上)且 。
三、旋转
图形的旋转:把一个图形绕一个 沿某个 旋转一定 的变换,叫做 ,这个定点叫做 。
图形的旋转由 、 和 所决定。
注意:①旋转 在旋转过程中保持不动. ②旋转 分为 时针和 时针。 ③旋转 一般小于360°。
旋转的特征:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应线段 ,对应角 ,图形的 和都没有发生变化,也就是旋转前后的两个图形 。
旋转对称图形:若一个图形绕一定点旋转一定角度(不超过180°)后,能与重合,这种图形就叫 。
四、中心对称
中心对称图形:把一个图形绕着某一个点旋转 °后,如果能够与 重合,那么这个图形叫做 图形,这个点就是它的 。
成中心对称:把一个图形绕着某一个点旋转 °后,如果它能够与 重合 那么就说这两个图形关于这个点成 ,这个点叫做 。
这两个图形中的对应点叫做关于中心的 。
中心对称的性质:关于中心对称的图形,对应点所连线段都经过 , 而且被对称中心 。(中心对称是旋转对称的特殊情况)。
中心对称点的作法——连结 和 ,并延长一倍。
对称中心的求法——方法①:连结一对对应点,再求其 ;
方法②:连结两对对应点,找他们的 。
五、图形的全等
1.全等图形定义:能够完全 的两个图形叫做全等图形。
2.图形变换与全等:一个图形经翻折、平移、旋转变换所得到的新图形与全等;全等的两个图形经过上述变换后一定能够 。
3.全等多边形:⑴有关概念:对应顶点、对应边、对应角等。
⑵性质:全等多边形的 、 相等;
⑶判定: 、 分别对应相等的两个多边形全等。
4.全等三角形:⑴性质:全等三角形的 、 相等;
⑵判定: 、 分别对应相等的两个三角形全等。