证明函数单调性的方法总结【精选3篇】

证明函数单调性的方法总结 篇一

函数的单调性是数学中一个重要的概念,它描述了函数在定义域内的增减性质。证明函数的单调性对于解决一些函数问题,如求函数的最大值、最小值等有着重要的作用。本篇文章将总结几种常用的证明函数单调性的方法。

一、导数法

导数法是证明函数单调性的常用方法之一。对于一个可导的函数,若在定义域内导数恒大于零,则函数单调递增;若导数恒小于零,则函数单调递减。这是因为导数表示函数的变化率,若导数恒大于零,则函数在定义域内的变化率始终为正,即函数递增。

二、区间法

区间法是一种直观的证明函数单调性的方法。对于一个给定的函数,可以将其定义域分为若干个区间,然后对每个区间进行分析。若在每个区间内,函数的增减性质保持一致,则可以得出函数在整个定义域内的单调性。这种方法需要对函数的定义域进行充分的分析,可以根据函数的性质和图像来确定区间。

三、拉格朗日中值定理

拉格朗日中值定理是微分学中的重要定理之一,也可以用来证明函数的单调性。该定理表明,若函数在一个闭区间内连续,在开区间内可导,则在该开区间内至少存在一个点,使得函数在该点的导数等于函数在闭区间的两个端点的斜率。通过利用拉格朗日中值定理,可以推导出函数的单调性。

四、二阶导数法

二阶导数法是证明函数单调性的一种常用方法。对于一个可导的函数,如果在定义域内的某个区间内,二阶导数恒大于零,则函数在该区间内单调递增;如果二阶导数恒小于零,则函数在该区间内单调递减。这是因为二阶导数表示函数的变化率的变化率,若二阶导数恒大于零,则函数的变化率在该区间内始终为正,即函数递增。

五、直接证明法

直接证明法是一种简单直接的证明函数单调性的方法。对于一个给定的函数,可以利用其定义,通过代数运算和逻辑推理,直接证明其单调性。这种方法通常需要对函数定义域的不等式进行推导和分析,需要一定的代数运算和逻辑推理能力。

总结:证明函数单调性的方法有多种多样,可以根据具体的函数和问题选择合适的方法。导数法、区间法、拉格朗日中值定理、二阶导数法和直接证明法是常用的证明函数单调性的方法。在实际应用中,可以根据问题的特点和要求选择合适的方法进行证明。同时,对于复杂的函数和问题,可能需要结合多种方法来进行综合分析和证明。

证明函数单调性的方法总结 篇三

证明函数单调性的方法总结

  函数的单调性是函数的一个重要性质,下面是小编整理的证明函数单调性的方法总结,希望对大家有帮助!

  1、定义法:

  利用定义证明函数单调性的一般步骤是:

  ①任取x1、x2∈D,且x1<x2;

  ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);

  ③依据差式的符号确定其增减性。

  2、导数法:

  设函数y=f(x)在某区间D内可导。如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数。

  注意:(补充)

  (1)若使得f′(x)=0的x的值只有有限个,

  则如果f ′(x)≥0,则f(x)在区间D内为增函数;

  如果f′(x) ≤0,则f(x)在区间D内为减函数。

  (2)单调性的判断方法:

  定义法及导数法、图象法、

  复合函数的单调性(同增异减)、

  用已知函数的单调性等

  (补充)单调性的有关结论

  1、若f(x),g(x)均为增(减)函数,

  则f(x)+g(x)仍为增(减)函数。

  2、若f(x)为增(减)函数,

  则-f(x)为减(增)函数,如果同时有f(x)>0,

  则

  为减(增)函数,

  为增(减)函数

  3、互为反函数的两个函数有相同的单调性。

  4、y=f[g(x)]是定义在M上的函数,

  若f(x)与g(x)的单调性相同,

  则其复合函数f[g(x)]为增函数;

  若f(x)、g(x)的单调性相反,

  则其复合函数f[g(x)]为减函数。简称”同增异减”

  5. 奇函数在关于原点对称的.两个区间上的单调性相同;

  偶函数在关于原点对称的两个区间上的单调性相反。

  函数单调性的应用

  (1)求某些函数的值域或最值。

  (2)比较函数值或自变量值的大小。

  (3)解、证不等式。

  (4)求参数的取值范围或值。

  (5)作函数图象。

相关文章

公园工作总结(通用6篇)

公园工作总结 第一篇20xx年以来,环卫站在镇党委、镇政府的领导下,在上级有关部门支持配合下,按照镇党委、镇政府的要求,围绕环卫站工作职责,始终坚持“创建文明城市”这一核心,树立全面、协调、可持续发展...
工作总结2012-03-03
公园工作总结(通用6篇)

it技术工作总结【推荐6篇】

it技术工作总结 第一篇时间飞逝,转眼间五年经过,本人从来到公司就一直从事测量这门技术,技术是公司的核心力量,对于矿山企业,地、测、采三种技术更是矿山企业的基础。在领导的关心和同事的大力帮助下,本人在...
工作总结2014-05-01
it技术工作总结【推荐6篇】

区基层治理工作总结(推荐6篇)

时间过得真快,一段时间的工作已经告一段落了,回顾这段时间以来的工作成果,你有什么感悟呢?是时候认真地做好工作总结了。好的工作总结都具备一些什么特点呢?以下是小编精心整理的区基层治理工作总结(通用18篇...
工作总结2018-05-09
区基层治理工作总结(推荐6篇)

ui设计师转正工作总结【优质4篇】

2017ui设计师转正工作总结白驹过隙,转眼间20XX年已近结尾,时间伴随着我们的脚步急驰而去,到了个人工作总结的时候,穆然回首,才发现过去的一年不还能画上圆满的句号,详细内容请看下文UI设计师个人年...
工作总结2011-03-06
ui设计师转正工作总结【优质4篇】

小学英语教学经验总结【精简5篇】

课堂教学是教学工作的主阵地,提高课堂教学的实效性、培养学生学习兴趣、提高学生学习成绩是我们的最终目的。接下来是小学英语教学经验总结,欢迎阅读!  小学英语教学经验总结1  我们都知道小学阶段是小学生跨...
工作总结2016-02-07
小学英语教学经验总结【精简5篇】

个人工作总结怎么写(精彩6篇)

时间一晃而过,一段时间的工作活动告一段落了,这是一段珍贵的工作时光,我们收获良多,是时候在工作总结中好好总结过去的成绩了。你还在为写工作总结而苦恼吗?下面是小编帮大家整理的个人工作总结怎么写(精选12...
工作总结2018-06-09
个人工作总结怎么写(精彩6篇)