高中几何知识点总结(精彩3篇)

高中几何知识点总结 篇一

高中几何知识点总结

在高中数学课程中,几何是一个非常重要的部分。几何涉及到空间的形状、大小以及关系的研究,是数学中的一个重要分支。本文将总结高中几何的一些重要知识点,帮助学生更好地掌握几何知识。

一、平面几何

1. 平面图形的性质:如点、线、角、多边形等的定义和性质,包括直线的平行与垂直关系、角的大小关系等。

2. 三角形的性质:如角的分类、边的关系等,包括等腰三角形、等边三角形等的性质。

3. 四边形的性质:如平行四边形、矩形、正方形等的性质。

4. 圆的性质:如圆心角、圆周角的关系、切线的性质等。

二、立体几何

1. 空间图形的性质:如点、线、面、体的定义和性质,包括平行面与垂直面的判定、平行线与垂直线的判定等。

2. 空间几何体的性质:如球体、圆台、棱锥、棱柱等的性质,包括体积、表面积等的计算公式和方法。

3. 空间几何体的展开图:如正方体、长方体等的展开图的绘制和计算。

三、向量几何

1. 向量的定义和性质:如向量的加减、数量积、向量积的计算方法和性质。

2. 直线与平面的关系:如直线与平面的交点、直线与平面的位置关系等的判定方法。

四、解析几何

1. 平面直角坐标系和空间直角坐标系的建立和使用。

2. 直线和曲线的方程的求解和性质。

3. 二次曲线的方程和性质:如圆的方程、椭圆的方程、抛物线的方程等的求解和性质。

总结起来,高中几何知识点的掌握对于学生的数学能力和思维能力的培养具有重要意义。通过学习这些知识点,学生可以培养几何思维、空间想象和逻辑推理能力,为日后的学习和工作打下坚实的数学基础。

高中几何知识点总结 篇二

高中几何知识点总结

几何是高中数学中的一个重要分支,涉及到空间的形状、大小以及关系的研究。在高中阶段,学生需要掌握一些基本的几何知识点,本文将总结一些重要的几何知识点,帮助学生更好地理解和应用几何知识。

一、平面几何

1. 平面图形的性质:包括点、线、角、多边形等的定义和性质,学生需要了解直线的平行与垂直关系、角的大小关系等基本知识。

2. 三角形的性质:学生需要掌握角的分类、边的关系等,了解等腰三角形、等边三角形等的性质。

3. 四边形的性质:学生需要了解平行四边形、矩形、正方形等的性质,包括对角线的性质等。

4. 圆的性质:学生需要了解圆心角、圆周角的关系、切线的性质等。

二、立体几何

1. 空间图形的性质:学生需要了解点、线、面、体的定义和性质,掌握平行面与垂直面的判定、平行线与垂直线的判定等基本方法。

2. 空间几何体的性质:学生需要掌握球体、圆台、棱锥、棱柱等的性质,包括体积、表面积等的计算公式和方法。

3. 空间几何体的展开图:学生需要学会绘制和计算正方体、长方体等的展开图。

三、向量几何

1. 向量的定义和性质:学生需要了解向量的加减、数量积、向量积的计算方法和性质。

2. 直线与平面的关系:学生需要了解直线与平面的交点、直线与平面的位置关系等的判定方法。

四、解析几何

1. 平面直角坐标系和空间直角坐标系的建立和使用。

2. 直线和曲线的方程的求解和性质。

3. 二次曲线的方程和性质:学生需要掌握圆的方程、椭圆的方程、抛物线的方程等的求解和性质。

通过学习以上几何知识点,学生可以培养几何思维、空间想象和逻辑推理能力,提高数学解题能力和创造力。几何的学习不仅对于高中数学的学习有着重要的意义,也对于学生的日常生活和工作具有实际应用价值。因此,学生应该重视几何知识的学习,不断提高自己的几何素养。

高中几何知识点总结 篇三

  1. 空间直线与平面位置分三种:相交、平行、在平面内.

  2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)

  [注]:①直线 与平面 内一条直线平行,则 ∥ . (×)(平面外一条直线)

  ②直线 与平面 内一条直线相交,则 与平面 相交. (×)(平面上一条直线)

  ③若直线 与平面 平行,则 平面内必存在无数条直线与已知直线平行. (√)(不是任意一条直线,可利用平行的传递性证之)

  ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)

  ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)

  ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线 与平面 、 所成角相等,则 ∥ .(×)( 、 可能相交)

  3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)

  4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.

   若 ⊥ , ⊥ ,得 ⊥ (三垂线定理),

  得不出 ⊥ . 因为 ⊥ ,但 不垂直OA.

   三垂线定理的逆定理亦成立.

  直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)

  直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.

  推论:如果两条直线同垂直于一个平面,那么这两条直线平行.

  [注]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)

  ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)

  ③垂直于同一平面的两条直线平行.(√)

  5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.

  [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]

  ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上

  四、 平面平行与平面垂直.

  1. 空间两个平面的位置关系:相交、平行.

  2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)

  推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.

  [注]:一平面间的任一直线平行于另一平面.

  3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)

  4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.

  两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)

  注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.

  5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.

  推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.

  证明:如图,找O作OA、OB分别垂直于 ,

  因为 则 .

  6. 两异面直线任意两点间的距离公式: ( 为锐角取加, 为钝取减,综上,都取加则必有 )

  7. ⑴最小角定理: ( 为最小角,如图)

  ⑵最小角定理的应用(∠PBN为最小角)

  简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.

  成角比交线夹角一半大,又比交线夹角补角小,一定有2条.

  成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱.

  1. 棱柱.

  ⑴①直棱柱侧面积: ( 为底面周长, 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.

  ②斜棱住侧面积: ( 是斜棱柱直截面周长, 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.

  ⑵{四棱柱} {平行六面体} {直平行六面体} {长方体} {正四棱柱} {正方体}.

  {直四棱柱} {平行六面体}={直平行六面体}.

  ⑶棱柱具有的性质:

  ①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形.

  ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.

  ③过棱柱不相邻的两条侧棱的截面都是平行四边形.

  注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图)

  ②(直棱柱定义)棱柱有一条侧棱和底面垂直.

  ⑷平行六面体:

  定理一:平行六面体的对角线交于一点,并且在交点处互相平分.

  [注]:四棱柱的对角线不一定相交于一点.

  定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.

  推论一:长方体一条对角线与同一个顶点的三条棱所成的角为 ,则 . 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为 ,则 .

  [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)

  ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行)

  ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)

  ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)

  2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.

  [注]:①一个棱锥可以四各面都为直角三角形.

  ②一个棱柱可以分成等体积的三个三棱锥;所以 .

  ⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.

  [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)

  ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等

  iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角

  形(即侧棱相等);底面为正多边形.

  ②正棱锥的侧面积: (底面周长为 ,斜高为 )

  ③棱锥的侧面积与底面积的射影公式: (侧面与底面成的二面角为 ) 附: 以知 ⊥ , , 为二面角 .

  则 ①, ②, ③ ①②③得 .

  注:S为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:

  ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

  ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. ⑶特殊棱锥的顶点在底面的射影位置:

  ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

  ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

  ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

  ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

  ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

  ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂

  心.

  ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

  ⑧每个四面体都有内切球,球心 是四面体各个二面角的平分面的交点,到各面的距离等于半径.

  [注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

  ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:AB⊥CD,AC⊥BD BC⊥AD. 令

  得 ,已知

  则 .

  iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

  iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

  简证:取AC中点 ,则 平面 90°易知EFGH为平行四边形 EFGH为长方形.若对角线等,则 为正方形.

  3. 球:⑴球的截面是一个圆面.

  ①球的表面积公式: .

  ②球的体积公式: .

  ⑵纬度、经度:

  ①纬度:地球上一点 的纬度是指经过 点的球半径与赤道面所成的角

  的度数.

  ②经度:地球上 两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点 的经线是本初子午线时,这个二面角的度数就是 点的经度.

  附:①圆柱体积: ( 为半径, 为高)

  ②圆锥体积: ( 为半径, 为高)

  ③锥形体积: ( 为底面积, 为高)

  4. ①内切球:当四面体为正四面体时,设边长为a, , , 得 .

  注:球内切于四面体:

  ②外接球:球外接于正四面体,可如图建立关系式.

  六. 空间向量.

  1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.

  注:①若 与 共线, 与 共线,则 与 共线.(×) [当 时,不成立]

  ②向量 共面即它们所在直线共面.(×) [可能异面]

  ③若 ∥ ,则存在小任一实数 ,使 .(×)[与 不成立] ④若 为非零向量,则 .(√)[这里用到 之积仍为向量]

  (2)共线向量定理:对空间任意两个向量 , ∥ 的充要条件是存在实数 (具有唯一性),使 .

  (3)共面向量:若向量 使之平行于平面 或 在 内,则 与 的关系

  是平行,记作 ∥ .

  (4)①共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对x、y使 .

  ②空间任一点O和不共线三点A、B、C,则 是PABC四点共面的充要条件.(简证: P、A、B、C四点共面)

  注:①②是证明四点共面的常用方法.

  2. 空间向量基本定理:如果三个向量 不共面,那么对空间任一向量 ,存在一个唯一的有序实数组x、y、z,使 .

  推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使 (这里隐含x+y+z≠1).

  注:设四面体ABCD的三条棱, 其

  中Q是△BCD的重心,则向量 用 即证.

  3. (1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标). ①令 =(a1,a2,a3), ,则

  ∥

  (用到常用的向量模与向量之间的转化: )

  ②空间两点的距离公式: .

  (2)法向量:若向量 所在直线垂直于平面 ,则称这个向量垂直于平面 ,记作 ,如果 那么向量 叫做平面 的法向量.

  (3)用向量的常用方法:

  ①利用法向量求点到面的距离定理:如图,设n是平面 的法向量,

  AB是平面 的一条射线,其中 ,则点B到平面 的距离为 .

  ②利用法向量求二面角的平面角定理:设 分别是二面角 中平面 的法向量,则 所成的角就是所求二面角的平面角或其补角大小( 方向相同,则为补角, 反方,则为其夹角).

  ③证直线和平面平行定理:已知直线 平面 , ,且CDE三点不共线,则a∥ 的充要条件是存在有序实数对 使 .(常设 求解 若 存在即证毕,若 不存在,则直线AB与平面相交).

相关文章

教师研修总结【优质6篇】

总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,他能够提升我们的书面表达能力,不妨让我们认真地完成总结吧。但是却发现不知道该写些什么,下面是小编整理的教师研修总结,欢迎大家分...
工作总结2017-09-06
教师研修总结【优质6篇】

办公室主任个人工作总结(精彩6篇)

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能够使头脑更加清醒,目标更加明确,因此,让我们写一份总结吧。那么你知道总结如何写吗?以下是小编为大家整理的办公室主任个人工作总结7篇...
工作总结2013-02-07
办公室主任个人工作总结(精彩6篇)

借调期间个人工作总结(优秀6篇)

借调期间个人工作总结 第一篇编者按:本文主要从效率;团结互助;和谐的人际交往;大胆管理,善于创新进行讲述。其中,主要包括:每位干事都能以最短的时间巧妙的方式来完成分配下来的各项工作,使得收取工作进行的...
工作总结2016-06-09
借调期间个人工作总结(优秀6篇)

车班工作总结11篇(优质3篇)

车班工作总结 第一篇全年以来,车队紧紧围绕“安全、高效、节约”的工作方针,在领导的关心和大力支持下,经全队人员的共同努力和单位各部门的配合下,圆满地完成了各项工作任务,为我市沿江开发做出应有的贡献、现...
工作总结2011-06-03
车班工作总结11篇(优质3篇)

转正工作总结范文30篇(精彩3篇)

转正工作总结范文 第一篇自20xx年4月17日我加入xxx行(中国)至今,已有三个多月的时间,经过这三个月的试用,我现已进入转正阶段。我所在的部门是项目代理一部,目前,我们项目组主要负责xxx项目的营...
工作总结2017-08-01
转正工作总结范文30篇(精彩3篇)

中国电信工作总结(精简6篇)

中国电信工作总结 第一篇深入贯彻落实科学发展观,以省公司和市公司20xx年工作会议精神为指导,围绕创新和服务领先,以“两个优化”、“四个加快”、“六个提升”为抓手,推动全业务超常规发展,确保各项工作跟...
工作总结2014-02-05
中国电信工作总结(精简6篇)