高三概率知识点总结【实用3篇】

高三概率知识点总结 篇一

在高三数学中,概率是一个重要的部分。概率可以帮助我们预测事件发生的可能性,也可以帮助我们分析和解释统计数据。下面是一些高三概率知识点的总结:

1. 随机事件和样本空间:随机事件是指在一次试验中可能发生的结果,样本空间是指所有可能结果的集合。例如,掷一枚硬币的结果可以是正面或反面,因此掷硬币是一个随机事件,样本空间为{正面,反面}。

2. 事件的概率:事件A的概率被定义为A发生的可能性,记作P(A)。概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。例如,掷一枚硬币正面朝上的概率为1/2。

3. 互斥事件和对立事件:互斥事件是指两个事件不可能同时发生,例如掷一枚硬币正面朝上和反面朝上就是互斥事件。对立事件是指两个事件只可能发生其中之一,例如掷一枚硬币正面朝上和反面朝上就是对立事件。

4. 事件的运算:事件的运算包括并、交和差。事件A并事件B表示A或B至少发生一次,记作A∪B;事件A交事件B表示A和B同时发生,记作A∩B;事件A差事件B表示A发生但B不发生,记作A-B。

5. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。例如,从一副扑克牌中抽取一张牌,如果已知抽到的牌是红色的,那么抽到红桃牌的概率为P(红桃|红色) = P(红桃∩红色)/P(红色)。

6. 独立事件:如果事件A发生与否不受事件B发生与否的影响,那么事件A和事件B是独立事件。独立事件的概率计算公式为P(A∩B) = P(A) * P(B)。例如,掷一枚硬币正面朝上和抛一枚骰子出现1点是独立事件,它们的概率为P(正面∩1点) = P(正面) * P(1点)。

以上是高三概率知识点的基本总结。通过掌握这些知识点,我们可以更好地理解和应用概率,提高数学解题的能力。希望同学们在备战高考的过程中能够充分掌握这些知识点,顺利应对数学考试。

高三概率知识点总结 篇二

在高三数学中,概率是一个重要的部分。概率可以帮助我们预测事件发生的可能性,也可以帮助我们分析和解释统计数据。下面是一些高三概率知识点的总结:

1. 随机事件和样本空间:随机事件是指在一次试验中可能发生的结果,样本空间是指所有可能结果的集合。例如,掷一枚硬币的结果可以是正面或反面,因此掷硬币是一个随机事件,样本空间为{正面,反面}。

2. 事件的概率:事件A的概率被定义为A发生的可能性,记作P(A)。概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。例如,掷一枚硬币正面朝上的概率为1/2。

3. 互斥事件和对立事件:互斥事件是指两个事件不可能同时发生,例如掷一枚硬币正面朝上和反面朝上就是互斥事件。对立事件是指两个事件只可能发生其中之一,例如掷一枚硬币正面朝上和反面朝上就是对立事件。

4. 事件的运算:事件的运算包括并、交和差。事件A并事件B表示A或B至少发生一次,记作A∪B;事件A交事件B表示A和B同时发生,记作A∩B;事件A差事件B表示A发生但B不发生,记作A-B。

5. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。例如,从一副扑克牌中抽取一张牌,如果已知抽到的牌是红色的,那么抽到红桃牌的概率为P(红桃|红色) = P(红桃∩红色)/P(红色)。

6. 独立事件:如果事件A发生与否不受事件B发生与否的影响,那么事件A和事件B是独立事件。独立事件的概率计算公式为P(A∩B) = P(A) * P(B)。例如,掷一枚硬币正面朝上和抛一枚骰子出现1点是独立事件,它们的概率为P(正面∩1点) = P(正面) * P(1点)。

以上是高三概率知识点的基本总结。通过掌握这些知识点,我们可以更好地理解和应用概率,提高数学解题的能力。希望同学们在备战高考的过程中能够充分掌握这些知识点,顺利应对数学考试。

高三概率知识点总结 篇三

高三概率知识点总结

  聪明出于勤奋,天才在于积累。我们要振作精神,下苦功学习。小编准备了高三概率知识点总结法,希望能帮助到大家。

  古典概率与几何概率

  1、基本事件特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。

  2、古典概率:具有下列两个特征的随机试验的数学模型称为古典概型:

  (1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.

  P(A)A中所含样本点的个数nA中所含样本点的个数n.

  3、几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为几何概率.几何概率具有无限性和等可能性。

  4、古典概率和几何概率的基本事件都是等可能的;但古典概率基本事件的个数是有限的,几何概率的是无限个的.

  计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的`合理定势。

  另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。

  能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。

  例1. 一次掷两颗骰子,求点数和恰为8这一事件A的概率。

  分析:这实际上是一个等可能事件的概率。掷两个骰子出现的基本结果如下表:

  解:表中基本结果36个,而点数为8的有5个,故:P(A)=-

  评述:本题可归结为掷骰子问题,通过对掷骰子情况的研究得出各种概率数学模型,体现了数学建模的思想:

  (1)、投掷一颗均匀的骰子,研究出现各种点的情况,这是等可能事件的概率,各点出现的概率为1/6。

  (2)、同时投掷两颗均匀的骰子,研究出现各种点的情况,可列一表格或用坐标系表示。

  (3)、同时投掷n颗均匀的骰子,研究出现各种点的情况,可看作n次独立事件的概率。

  例2.同时掷四枚均匀硬币,求:

  (1)恰有两枚正面朝上的概率;

  (2)至少有两枚正面朝上的概率。

  分析:因同时抛掷四枚硬币,可认为四次独立重复试验。

  解: (1)问中可看作“4次重复试验中,恰有2次发生”的概率:

  ∴P4(2)=C42(-)2(1--)2=-=-

  (2)问中,可考虑对立事件“至多有一枚正面朝上”

  故P=1-P4(0)-P4(1)=1-C40(-)0(1--)4-C41(-)1(1--)3=-

  评述:研究各种掷硬币的情况,抽象出其数学本质,再利用概率知识解决,这就是数学建模的过程。这一问题可推广到n枚均匀硬币同时投掷的情况。

相关文章

班主任工作总结(实用6篇)

总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此我们要做好归纳,写好总结。我们该怎么去写总结呢?以下是小编帮大家整理...
工作总结2016-02-03
班主任工作总结(实用6篇)

卫生院妇幼卫生工作培训工作总结【精选3篇】

为进一步提高我镇村级卫生人员的整体素质,建立一支具有优质、高校的服务能力的妇幼卫生工作队伍,为母婴的安全提供为有力的保障,全面地落实各项工作任务指标,我院于20xx年2月21日完成对村级保健的业务培训...
工作总结2012-09-05
卫生院妇幼卫生工作培训工作总结【精选3篇】

班长学期工作总结【通用6篇】

班长学期工作总结 第一篇1,建立班群和加同学们的飞信,便于联络同学的情感及传达各种信息。2,班干分工明确,同时也是个分工不分家的集体,大家团结一致,积极团结同学,使班级的日常管理井然有序。3,我们以自...
工作总结2018-09-01
班长学期工作总结【通用6篇】

小学班主任工作总结

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以使我们更有效率,让我们一起来学习写总结吧。你想知道总结怎么写吗?以下是小编收集整理的小学班主任工作总结5篇,希望对大家有所帮助。...
工作总结2014-07-04
小学班主任工作总结

物流主管工作总结范文【经典6篇】

物流主管工作总结范文 第一篇20xx年即将过去,经过又一年的物流管理工作,公司的物流工作已进入了稳步发展阶段,同时自己在物流管理方面的能力也得到了锻炼与提高。一、物流费用。物流费用控制是一项重要的工作...
工作总结2012-09-03
物流主管工作总结范文【经典6篇】

幼儿教师个人总结(经典6篇)

总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能够使头脑更加清醒,目标更加明确,让我们好好写一份总结吧。你所见过的总结应该是什么样的?下面是小编帮大家整理的幼儿教师个人总结5篇,...
工作总结2019-01-06
幼儿教师个人总结(经典6篇)