初一到初三的数学知识点总结(优质6篇)

初一到初三的数学知识点总结 篇一

数学是一门基础学科,是培养学生逻辑思维和问题解决能力的重要学科。初一到初三是数学学习的关键阶段,学生们需要掌握一系列的数学知识点。以下是初一到初三数学知识点的总结:

1. 整数运算:初一学生需要掌握整数的加减乘除运算,并能够灵活运用。初二和初三的学生需要进一步学习整数的绝对值、相反数和倒数等概念。

2. 分数与小数:学生需要掌握分数和小数的表示方法,能够进行分数和小数之间的相互转换。初二和初三的学生需要学习分数和小数的加减乘除运算,并能够灵活运用。

3. 代数:学生需要学习代数的基本概念和运算法则,能够解一元一次方程和简单的一元二次方程。初二和初三的学生需要学习二元一次方程组和不等式的解法。

4. 几何:学生需要学习几何的基本概念和性质,能够识别和绘制常见的几何图形,如直线、射线、线段、角等。初二和初三的学生需要学习三角形、四边形和圆的性质,并能够利用这些性质解决相关问题。

5. 数据与统计:学生需要学习数据的收集、整理和分析方法,能够计算和解释统计指标,如平均数、中位数和众数等。初二和初三的学生需要学习概率的基本概念和计算方法。

6. 函数:初二和初三的学生需要学习函数的定义和性质,能够绘制函数图像并进行函数的运算和变换。

以上是初一到初三数学知识点的总结,学生们需要通过课堂学习和实践掌握这些知识点。同时,还需要进行大量的习题训练和思考,才能真正掌握数学的基本概念和解题方法。

初一到初三的数学知识点总结 篇二

数学是一门抽象而又具体的学科,它涵盖了很多的知识点。在初一到初三的学习过程中,学生们需要逐步掌握并应用这些知识点。以下是初一到初三数学知识点的总结:

1. 整数运算:初一的学生需要学习整数的加减乘除运算,初二和初三的学生需要进一步学习整数的绝对值、相反数和倒数等概念,并能够运用这些概念解决实际问题。

2. 分数与小数:学生需要学习分数和小数的表示方法,能够进行分数和小数之间的相互转换。初二和初三的学生需要学习分数和小数的加减乘除运算,并能够运用这些运算解决实际问题。

3. 代数:学生需要学习代数的基本概念和运算法则,能够解一元一次方程和简单的一元二次方程。初二和初三的学生需要学习二元一次方程组和不等式的解法,并能够运用这些解法解决实际问题。

4. 几何:学生需要学习几何的基本概念和性质,能够识别和绘制常见的几何图形,如直线、射线、线段、角等。初二和初三的学生需要学习三角形、四边形和圆的性质,并能够利用这些性质解决相关问题。

5. 数据与统计:学生需要学习数据的收集、整理和分析方法,能够计算和解释统计指标,如平均数、中位数和众数等。初二和初三的学生需要学习概率的基本概念和计算方法,并能够运用这些方法解决实际问题。

6. 函数:初二和初三的学生需要学习函数的定义和性质,能够绘制函数图像并进行函数的运算和变换,并能够运用函数解决实际问题。

以上是初一到初三数学知识点的总结,学生们需要通过课堂学习和实践掌握这些知识点。同时,还需要进行大量的习题训练和思考,才能够真正掌握数学的基本概念和解题方法。

初一到初三的数学知识点总结 篇三

  1.有理数:

  (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:① ②

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0?a+b=0?a、b互为相反数。

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:或;绝对值的问题经常分类讨论;

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

  6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

  7.有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a—b=a+(—b)。

  10.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(—a)n=—an或(a —b)n=—(b—a)n,当n为正偶数时:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18.混合运算法则:先乘方,后乘除,最后加减。

  本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。

  体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。

初一到初三的数学知识点总结 篇四

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的'定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35、弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr

初一到初三的数学知识点总结 篇五

  一、函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  二、相交线与平行线

  1、知识网络结构

  2、知识要点

  (1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  (2)在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  (3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。+=180°;+=180°;+=180°;+=180°。

  3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=; =。

  4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a⊥b时,====90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  5、同位角、内错角、同旁内角基本特征:

  在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。

  在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  三、实数

  1、实数的分类

  (1)按定义分类:

  (2)按性质符号分类:

  注:0既不是正数也不是负数.

  2、实数的相关概念

  (1)相反数

  ①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  ②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  ③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  (2)绝对值|a|≥0.

  (3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  (4)平方根

  ①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  ②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  (5)立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  3、实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  4、实数大小的比较

  (1)对于数轴上的任意两个点,靠右边的点所表示的数较大.

  (2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  (3)无理数的比较大小:

初一到初三的数学知识点总结 篇六

  1、有理数:

  ①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:

  ①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:

  ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数 无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

  ②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

  立方根:

  ①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:

  ①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

  ②把同类项合并成一项就叫做合并同类项。

  ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:

  ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。

  ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn 除法一样。

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:

  ①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  初中数学知识点:直线的位置与常数的关系

  ①k>0则直线的倾斜角为锐角

  ②k<0则直线的倾斜角为钝角

  ③图像越陡,|k|越大

  ④b>0直线与y轴的交点在x轴的上方

  ⑤b<0直线与y轴的交点在x轴的下方

相关文章

校运会工作总结【经典3篇】

经过激烈角逐,为期2天(12.6—7日)的江西美佛儿国际学校第三届校运会已胜利闭幕,我们小学部代表队本着“弘扬奥运精神,强健学生体魄”的宗旨,以其严谨、扎实、稳重的风格,取得了“团体总分第一”的辉煌成...
工作总结2018-06-06
校运会工作总结【经典3篇】

中信银行储蓄个人总结(精简3篇)

总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,它可以帮助我们有寻找学习和工作中的规律,我想我们需要写一份总结了吧。总结怎么写才不会流于形式呢?以下是小编...
工作总结2014-08-02
中信银行储蓄个人总结(精简3篇)

幼儿园园务总结(最新6篇)

总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以给我们下一阶段的学习和工作生活做指导,不如我们来制定一份总结吧。那么你真的懂得怎么写总结吗?以下是小编帮大家整理的幼儿园园...
工作总结2013-05-09
幼儿园园务总结(最新6篇)

书记员工作总结【优选6篇】

书记员工作总结 第一篇走进法院的这近一年来,让我感受到了工作的压力、纪律的严密、精神的充实、生活的激情。这一年,是兢兢业业的一年,也是自我提高的一年,同时也是让我有自信并坚定在这个工作岗位上清苦拼搏的...
工作总结2013-02-07
书记员工作总结【优选6篇】

年终工作总结结尾(优秀3篇)

一、任务完成情况  今年实际完成销售量为5000万,其中一车间球阀2000万,蝶阀1200万,其他1800万,基本完成年初既定目标。  球阀常规产品比去年有所下降,偏心半球增长较快,锻钢球阀相比去年有...
工作总结2016-09-03
年终工作总结结尾(优秀3篇)

幼儿教师年度工作总结【最新6篇】

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以使我们更有效率,让我们一起认真地写一份总结吧。总结怎么写才不会千篇一律呢?以下是小编整理的幼儿教师年度工作总结9篇,仅供参...
工作总结2012-05-01
幼儿教师年度工作总结【最新6篇】