二次函数的知识点总结(经典3篇)

二次函数的知识点总结 篇一

二次函数是高中数学中的重要内容之一,它是一种特殊的二次方程,具有许多独特的性质和应用。在这篇文章中,我将总结二次函数的一些重要知识点。

首先,我们来回顾一下二次函数的定义。二次函数是一个以x的二次方为最高次幂的函数,通常表示为y = ax^2 + bx + c。其中,a、b、c是实数,且a不等于0。这里的a决定了二次函数的开口方向和开口的大小,而b则决定了二次函数的位置,c决定了二次函数的纵向平移。

其次,我们来看二次函数的图像特点。当a大于0时,二次函数的图像开口向上,形如一个U型;当a小于0时,二次函数的图像开口向下,形如一个倒U型。关于二次函数的图像,我们还可以从顶点、对称轴、零点等方面进行分析。顶点是二次函数图像的最低点或最高点,其横坐标对应的是二次函数的对称轴。零点是二次函数的解,即使得函数值为0的x值。

接下来,我们讨论二次函数的性质。首先是二次函数的对称性。二次函数关于其对称轴是对称的,即对称轴上的任意一点(x, y)对应的另一个点也是(x, y)。其次是二次函数的增减性。当a大于0时,二次函数在对称轴的左侧递增,在对称轴的右侧递减;当a小于0时,二次函数在对称轴的左侧递减,在对称轴的右侧递增。最后是二次函数的最值。当a大于0时,二次函数的最小值为对称轴的纵坐标;当a小于0时,二次函数的最大值为对称轴的纵坐标。

最后,我们来探讨二次函数的应用。二次函数在现实生活中有许多应用,比如抛物线的运动轨迹、物体的抛射问题等。通过二次函数,我们可以计算出物体的最高点、最远距离等重要参数。此外,二次函数还可以用来解决最优化问题,比如求解最大或最小值的问题。

综上所述,二次函数是高中数学中的重要内容。通过对二次函数的定义、图像特点、性质和应用的理解,我们可以更好地理解和应用二次函数。希望这篇文章能够帮助大家系统地复习和总结二次函数的知识点。

二次函数的知识点总结 篇二

二次函数是高中数学中的重要内容之一,它是一种特殊的二次方程,具有许多独特的性质和应用。在这篇文章中,我将继续总结二次函数的一些重要知识点。

首先,我们来回顾一下二次函数的解的性质。对于一元二次方程ax^2 + bx + c = 0,我们可以通过求解它的根来得到二次函数的零点。根的个数与判别式有关,判别式D = b^2 - 4ac。当D大于0时,方程有两个不相等的实根,对应着二次函数与x轴交点的横坐标;当D等于0时,方程有两个相等的实根,对应着二次函数与x轴交点的横坐标相同;当D小于0时,方程没有实根,对应着二次函数与x轴没有交点。

其次,我们来看二次函数的因式分解。对于一元二次函数,我们可以将其因式分解为两个一次因子相乘的形式。这个过程可以通过求解一元二次方程的根来完成。例如,对于二次函数y = x^2 - 5x + 6,我们可以将其因式分解为y = (x - 2)(x - 3)。

接下来,我们讨论二次函数与一次函数的关系。当二次函数的系数a不等于0时,我们可以将其化简为一次函数的形式。例如,对于二次函数y = 2x^2 + 3x + 1,我们可以将其化简为y = 2(x + 1/4)^2 - 1/8。这个过程可以通过配方法完成,从而得到二次函数与一次函数之间的关系。

最后,我们来探讨二次函数的平移与伸缩。当二次函数的系数a不等于1时,我们可以通过平移与伸缩来改变二次函数的形状和位置。平移是指将二次函数的图像沿x轴或y轴移动,而伸缩是指改变二次函数图像的大小。这些变化可以通过改变系数a、b、c来实现。

综上所述,二次函数是高中数学中的重要内容。通过对二次函数的解的性质、因式分解、与一次函数的关系以及平移与伸缩的理解,我们可以更好地应用二次函数解决各种问题。希望这篇文章能够帮助大家进一步理解和掌握二次函数的知识点。

二次函数的知识点总结 篇三

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的'增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x-x|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

相关文章

个人总结怎么写【推荐6篇】

总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,不妨坐下来好好写写总结吧。那么总结应该包括什...
工作总结2018-08-04
个人总结怎么写【推荐6篇】

出纳年终工作总结(精选6篇)

总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它是增长才干的一种好办法,为此我们要做好回顾,写好总结。那么你真的懂得怎么写总结吗?以下是小编为大家整理的出纳年终工...
工作总结2015-03-05
出纳年终工作总结(精选6篇)

农村小学教师个人工作总结(优质6篇)

时间一晃而过,一段时间的工作活动告一段落了,回顾这段时间中有什么值得分享的成绩呢?需要认真地为此写一份工作总结。那么工作总结的格式,你掌握了吗?以下是小编帮大家整理的农村小学教师个人工作总结,希望能够...
工作总结2018-08-06
农村小学教师个人工作总结(优质6篇)

员工个人年度工作总结【实用5篇】

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它能使我们及时找出错误并改正,我想我们需要写一份总结了吧。你所见过的总结应该是什么样的?以下是小编收集整理的员工个人年度工作...
工作总结2011-05-02
员工个人年度工作总结【实用5篇】

初中音乐工作总结【最新6篇】

初中音乐工作总结 第一篇我认为,每一个学生都有权利以自己独特的方式学习音乐,享受音乐的兴趣,参与各种音乐活动,表达个人的情智。所以,本学年我在教学中创造生动活泼、灵活多样的教学形式,为学生提供发展个性...
工作总结2019-07-07
初中音乐工作总结【最新6篇】

hr半年工作总结【6篇】

hr半年工作总结 第一篇共享知识分享快乐人力资源部2015年半年工作总结一、上半年工作完成情况上半年,人力资源部按照年度工作计划,认真履行职责,圆满完成各项目标任务及领导交办的其他工作。1、严格政策规...
工作总结2012-01-05
hr半年工作总结【6篇】