初二数学知识点大总结【精简3篇】

初二数学知识点大总结 篇一

在初二数学学习的过程中,我们接触到了许多重要的知识点,这些知识点为我们打下了坚实的数学基础。下面将对初二数学的主要知识点进行总结。

一、代数

1. 一元一次方程:学习了如何解一元一次方程,理解了方程的根的概念,掌握了解方程的基本方法。

2. 二次根式:学习了如何化简二次根式,掌握了二次根式的基本运算法则。

3. 直角三角形:学习了三角函数的概念和性质,掌握了解直角三角形的基本方法。

二、几何

1. 平行线与三角形:学习了平行线的性质和判定方法,掌握了平行线与三角形的相关定理。

2. 相似三角形:学习了相似三角形的概念和性质,掌握了相似三角形的判定方法和相关定理。

3. 三角形的面积:学习了计算三角形面积的方法,包括海伦公式和高度定理。

三、概率与统计

1. 抽样与调查:学习了如何进行抽样调查,掌握了调查的基本方法和统计分析的技巧。

2. 概率:学习了概率的概念和性质,掌握了计算概率的方法,包括频率法和几何法。

四、函数与图像

1. 函数的概念:学习了函数的定义和性质,理解了函数的图像和变化规律。

2. 一次函数:学习了一次函数的概念和性质,掌握了一次函数的图像和相关计算方法。

3. 二次函数:学习了二次函数的概念和性质,掌握了二次函数的图像和相关计算方法。

总结起来,初二数学知识点的学习涉及了代数、几何、概率与统计以及函数与图像等多个方面。通过对这些知识点的学习,我们不仅提高了解题能力和计算能力,还培养了逻辑思维和分析问题的能力。这些知识将为我们在高中数学学习中打下坚实的基础。

初二数学知识点大总结 篇二

在初二数学学习的过程中,我们学习了许多重要的知识点,这些知识点为我们打下了坚实的数学基础。下面将对初二数学的主要知识点进行总结。

一、代数

1. 一元一次方程:学习了如何解一元一次方程,掌握了方程的基本概念和解题方法。

2. 二次根式:学习了如何化简二次根式,掌握了二次根式的基本运算法则。

3. 平方根与立方根:学习了平方根和立方根的概念和计算方法。

二、几何

1. 平行线与三角形:学习了平行线的性质和判定方法,掌握了平行线与三角形的相关定理。

2. 相似三角形:学习了相似三角形的概念和性质,掌握了相似三角形的判定方法和相关定理。

3. 三角形的面积:学习了计算三角形面积的方法,包括海伦公式和高度定理。

三、概率与统计

1. 抽样与调查:学习了如何进行抽样调查,掌握了调查的基本方法和统计分析的技巧。

2. 概率:学习了概率的概念和性质,掌握了计算概率的方法,包括频率法和几何法。

四、函数与图像

1. 函数的概念:学习了函数的定义和性质,理解了函数的图像和变化规律。

2. 一次函数:学习了一次函数的概念和性质,掌握了一次函数的图像和相关计算方法。

3. 二次函数:学习了二次函数的概念和性质,掌握了二次函数的图像和相关计算方法。

通过对初二数学知识点的总结,我们可以看到,这些知识点的学习涉及了代数、几何、概率与统计以及函数与图像等多个方面。通过对这些知识点的学习,我们提高了解题能力和计算能力,培养了逻辑思维和分析问题的能力。这些知识将为我们在高中数学学习中打下坚实的基础。

初二数学知识点大总结 篇三

  整数与分数的倒数

  1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

  2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。

  如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。

  即12倒数是1/12。

  说明:倒数是本身的数是1和-1。(0没有倒数)

  把0.25化成分数,即1/4

  再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1

  再把4/1化成整数,即4

  所以0.25是4的倒数。也可以说4是0.25的倒数

  也可以用1去除以这个数,例如0.25

  1/0.25等于4 所以0.25的倒数4.

  因为乘积是1的两个数互为倒数。

  分数、整数也都使用这种规律。

  知识点总结:两个数乘积是1的数互为倒数,0没有倒数。

  因式分解同步练习(解答题)

  关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。

  因式分解同步练习(解答题)

  解答题

  9.把下列各式分解因式:

  ①a2+10a+25 ②m2-12mn+36n2

  ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

  10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

  11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

  答案:

  9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

  通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

  因式分解同步练习(填空题)

  同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

  因式分解同步练习(填空题)

  填空题

  5.已知9x2-6xy+k是完全平方式,则k的值是________.

  6.9a2+(________)+25b2=(3a-5b)2

  7.-4x2+4xy+(_______)=-(_______).

  8.已知a2+14a+49=25,则a的值是_________.

  答案:

  5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

  通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

  因式分解同步练习(选择题)

  同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。

  因式分解同步练习(选择题)

  选择题

  1.已知y2+my+16是完全平方式,则m的值是( )

  A.8 B.4 C.±8 D.±4

  2.下列多项式能用完全平方公式分解因式的是( )

  A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

  3.下列各式属于正确分解因式的是( )

  A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

  C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

  4.把x4-2x2y2+y4分解因式,结果是( )

  A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

  答案:

  1.C 2.D 3.B 4.D

  以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。

  整式的乘除与因式分解单元测试卷(填空题)

  下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。

  填空题(每小题4分,共28分)

  7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________

  8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .

  9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)

  10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .

  11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.

  (a+b)1=a+b;

  (a+b)2=a2+2ab+b2;

  (a+b)3=a3+3a2b+3ab2+b3;

  (a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.

  12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)

  第n年12345…

  老芽率aa2a3a5a…

  新芽率0aa2a3a…

  总芽率a2a3a5a8a…

  照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).

  13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .

  答案:

  7.

  考点:零指数幂;有理数的乘方。1923992

  专题:计算题。

  分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;

  (2)根据乘方运算法则和有理数运算顺序计算即可.

  解答:解:(1)根据零指数的意义可知x﹣4≠0,

  即x≠4;

  (2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.

  点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.

  8.

  考点:因式分解-分组分解法。1923992

  分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.

  解答:解:a2﹣1+b2﹣2ab

  =(a2+b2﹣2ab)﹣1

  =(a﹣b)2﹣1

  =(a﹣b+1)(a﹣b﹣1).

  故答案为:(a﹣b+1)(a﹣b﹣1).

  点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.

  9.

  考点:列代数式。1923992

  分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.

  解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.

  点评:解决问题的关键是读懂题意,找到所求的量的等量关系.

  10.

  考点:平方差公式。1923992

  分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.

  解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,

  ∴(2a+2b)2﹣12=63,

  ∴(2a+2b)2=64,

  2a+2b=±8,

  两边同时除以2得,a+b=±4.

  点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.

  11

  考点:完全平方公式。1923992

  专题:规律型。

  分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.

  解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.

  点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.

  12

  考点:规律型:数字的变化类。1923992

  专题:图表型。

  分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为

  21/34≈0.618.

  解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,

  所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,

  则比值为21/34≈0.618.

  点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.

  13.

  考点:整式的混合运算。1923992

  分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.

  解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,

  ∴a=4﹣1,

  解得a=3.

  故本题答案为:3.

  点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.

  以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

  整式的乘除与因式分解单元测试卷(选择题)

  下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。

  整式的乘除与因式分解单元测试卷

  选择题(每小题4分,共24分)

  1.(4分)下列计算正确的是( )

  A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6

  2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( )

  A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3

  3.(4分)下面是某同学在一次检测中的计算摘录:

  ①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2

  其中正确的个数有( )

  A.1个B.2个C.3个D.4个

  4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( )

  A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1

  5.(4分)下列分解因式正确的是( )

  A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)

  6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )

  A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab

  答案:

  1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992

  分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.

  解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;

  B、应为a4÷a=a3,故本选项错误;

  C、应为a3a2=a5,故本选项错误;

  D、(﹣a2)3=﹣a6,正确.

  故选D.

  点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.

  2.

  考点:多项式乘多项式。1923992

  分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.

  解答:解:(x﹣a)(x2+ax+a2),

  =x3+ax2+a2x﹣ax2﹣a2x﹣a3,

  =x3﹣a3.

  故选B.

  点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.

  3.

  考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992

  分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.

  解答:解:①3x3(﹣2x2)=﹣6x5,正确;

  ②4a3b÷(﹣2a2b)=﹣2a,正确;

  ③应为(a3)2=a6,故本选项错误;

  ④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.

  所以①②两项正确.

  故选B.

  点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.

  4

  考点:完全平方公式。1923992

  专题:计算题。

  分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.

  解答:解:x2是一个正整数的平方,它后面一个整数是x+1,

  ∴它后面一个整数的平方是:(x+1)2=x2+2x+1.

  故选C.

  点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.

  5,

  考点:因式分解-十字相乘法等;因式分解的意义。1923992

  分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

  解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;

  B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

  C、是整式的乘法,不是分解因式,故本选项错误;

  D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

  故选B.

  点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.

  6

  考点:因式分解-十字相乘法等;因式分解的意义。1923992

  分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

  解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;

  B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

  C、是整式的乘法,不是分解因式,故本选项错误;

  D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

  故选B.

  点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.

  6.

  考点:列代数式。1923992

  专题:应用题。

  分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.

  解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.

  ∴可绿化部分的面积为ab﹣bc﹣ac+c2.

  故选C.

  点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.

  用字母表示数时,要注意写法:

  ①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;

  ②在代数式中出现除法运算时,一般按照分数的写法来写;

  ③数字通常写在字母的前面;

  ④带分数的要写成假分数的形式.

  以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

[初二数学知识点大总结]

相关文章

幼儿园年终总结(最新6篇)

极其忙碌而又充实的一年又要过去了,回顾过去一年的工作,一定有很多需要梳理的事情,不如趁现在好好地总结一下过去的工作,争取来年再创佳绩!如何输出一份打动人心的年终总结呢?下面是小编为大家收集的幼儿园年终...
工作总结2015-09-02
幼儿园年终总结(最新6篇)

农村工作总结文案【通用6篇】

农村工作总结文案 第一篇一、基本情况二、加强领导,建立机构为基本建立符合我县农村实际和社会主义市场要求的农村公路管理养护机制和运行机制,保障农村公路的日常养护和正常使用,实现农村公路管理养护的正常化和...
工作总结2015-09-01
农村工作总结文案【通用6篇】

小学数学教师年终工作总结【通用6篇】

总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,它能够给人努...
工作总结2014-09-07
小学数学教师年终工作总结【通用6篇】

社区矫正工作总结(经典6篇)

时间不知不觉,我们后知后觉,辛苦的工作已经告一段落了,回顾这段时间,我们的工作能力、经验都有所成长,让我们对过去的工作做个梳理,再写一份工作总结。我们该怎么去写工作总结呢?以下是小编为大家收集的社区矫...
工作总结2019-05-05
社区矫正工作总结(经典6篇)

办公室年度个人工作总结(推荐6篇)

总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以给我们下一阶段的学习和工作生活做指导,不如我们来制定一份总结吧。总结怎么写才能发挥它的作用呢?以下是小编整理的办...
工作总结2012-04-03
办公室年度个人工作总结(推荐6篇)

小学教学总结(实用6篇)

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以有效锻炼我们的语言组织能力,因此好好准备一份总结吧。总结怎么写才能发挥它的作用呢?以下是小编帮大家整理的小学教学总结十五篇...
工作总结2015-04-01
小学教学总结(实用6篇)