初中数学知识点总结(优质3篇)
初中数学知识点总结 篇一
数学作为一门重要的学科,是初中阶段学生必须学习的科目之一。在初中数学的学习过程中,学生将接触到许多重要的数学知识点。本篇将对初中数学的几个重要知识点进行总结。
首先,我们来谈谈整数和有理数的概念。整数是由正整数、负整数和零组成的集合,用来表示没有小数部分的数。有理数是整数和分数的统称,可以用分数形式表示。整数和有理数的加减乘除运算是初中数学中的基础知识,同时也是解决实际问题的基础。
其次,我们来讨论一下代数式和方程式。代数式是由数、字母和运算符号组成的数学表达式,例如:2x+3。方程式则是含有未知数的等式,例如:2x+3=7。代数式和方程式的学习,可以帮助我们理解和解决实际问题,培养我们的逻辑思维能力。
接下来,我们来探讨一下几何图形的性质和计算。初中数学中的几何图形包括:点、线、面、角、三角形、四边形、圆等。我们需要了解各个几何图形的定义、性质和计算方法,学会利用几何图形解决实际问题。
最后,我们来讲一下概率和统计。概率是研究随机事件发生的可能性的数学分支,统计则是研究数据收集、分类、整理和分析的方法。学习概率和统计可以帮助我们理解和处理生活中的各种随机事件,提高我们的决策能力。
通过对初中数学的几个重要知识点的总结,我们可以看到,初中数学知识的学习不仅仅是为了应付考试,更是为了培养学生的逻辑思维能力和解决实际问题的能力。在学习数学的过程中,我们要注重理论联系实际,将数学知识应用于实际生活中,提高数学知识的实用性和可操作性。
初中数学知识点总结 篇二
数学是一门重要的学科,也是初中阶段学生必须学习的科目之一。初中数学知识点众多,本篇将对几个重要的数学知识点进行总结。
首先,我们来谈谈分数的概念和运算。分数是用来表示一个数与其整体之间的关系的数,由分子和分母组成。分数的加减乘除运算是初中数学中的基础知识,掌握好分数的运算规则对于解决实际问题非常重要。
其次,我们来讨论一下比例与百分数。比例是描述两个量之间相对大小的关系,可以用等比例方程表示。百分数则是以100为基数的百分比,常用于表示比例和比率。比例和百分数的学习,可以帮助我们理解和解决各种实际问题,培养我们的数学思维能力。
接下来,我们来探讨一下图形的面积和体积。图形的面积是指图形所占的平面区域的大小,可以用公式进行计算。图形的体积是指图形所占的空间的大小,也可以用公式进行计算。学习图形的面积和体积,可以帮助我们理解和解决与图形相关的实际问题。
最后,我们来讲一下函数和方程。函数是一种特殊的关系,它将一个集合中的每个元素与另一个集合中的唯一元素对应起来。方程是含有未知数的等式,可以用来解决各种实际问题。学习函数和方程,可以培养我们的逻辑思维能力和解决实际问题的能力。
通过对初中数学的几个重要知识点的总结,我们可以看到,初中数学的学习不仅仅是为了应付考试,更是为了培养学生的数学思维能力和解决实际问题的能力。在学习数学的过程中,我们要注重理论联系实际,将数学知识应用于实际生活中,提高数学知识的实用性和可操作性。
初中数学知识点总结 篇三
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆.
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含 dr)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)
/