数学一元二次方程公式定理的知识点总结【优秀3篇】
数学一元二次方程公式定理的知识点总结 篇一
一元二次方程是初中数学中的重要内容,它是由形如ax^2 + bx + c = 0的方程组成,其中a、b、c是已知的实数,且a ≠ 0。一元二次方程的解是指能够使方程成立的x的值。在解一元二次方程时,我们通常会使用一元二次方程的公式定理。
一元二次方程的公式定理是指:对于一元二次方程ax^2 + bx + c = 0,它的解可以由以下公式得出:
x = (-b ± √(b^2 - 4ac)) / (2a)
这个公式中的±表示取正负两个值,√表示开方运算。公式中的b^2 - 4ac被称为判别式,它可以用来判断一元二次方程的根的性质:
1. 当判别式大于0时,方程有两个不相等的实数根;
2. 当判别式等于0时,方程有两个相等的实数根;
3. 当判别式小于0时,方程没有实数根,但有两个共轭复数根。
在解一元二次方程时,我们可以根据判别式的值来判断方程的根的性质,进而选择合适的解法。如果判别式大于0,我们可以直接使用公式定理来求解方程的根;如果判别式等于0,我们可以将方程化简为二次完全平方式,再进行求解;如果判别式小于0,我们可以利用复数的性质来求解方程。
除了使用公式定理外,我们还可以利用一些特殊的性质和方法来解一元二次方程。例如,如果方程的系数都是整数,我们可以通过因式分解的方法来求解方程;如果方程的系数是有理数,我们可以利用有理根定理来求解方程。
总之,一元二次方程的公式定理是解一元二次方程的基本工具之一。通过掌握公式定理的知识,我们可以更加灵活地解决各种不同形式的一元二次方程,提高我们的数学解题能力。
数学一元二次方程公式定理的知识点总结 篇二
一元二次方程是数学中的重要内容,它是由形如ax^2 + bx + c = 0的方程组成,其中a、b、c是已知的实数,且a ≠ 0。解一元二次方程是求出能够使方程成立的x的值。在解一元二次方程时,我们可以使用一元二次方程的公式定理。
一元二次方程的公式定理是指:对于一元二次方程ax^2 + bx + c = 0,它的解可以由以下公式得出:
x = (-b ± √(b^2 - 4ac)) / (2a)
在这个公式中,±表示取正负两个值,√表示开方运算。公式中的b^2 - 4ac被称为判别式,它可以用来判断一元二次方程的根的性质。
当判别式大于0时,方程有两个不相等的实数根;当判别式等于0时,方程有两个相等的实数根;当判别式小于0时,方程没有实数根,但有两个共轭复数根。
通过判别式的值,我们可以选择合适的解法来解一元二次方程。当判别式大于0时,我们可以直接使用公式定理来求解方程的根;当判别式等于0时,我们可以将方程化简为二次完全平方式,再进行求解;当判别式小于0时,我们可以利用复数的性质来求解方程。
除了使用公式定理外,我们还可以利用一些特殊的性质和方法来解一元二次方程。例如,如果方程的系数都是整数,我们可以通过因式分解的方法来求解方程;如果方程的系数是有理数,我们可以利用有理根定理来求解方程。
总之,一元二次方程的公式定理是解一元二次方程的基本工具之一。掌握公式定理的知识,可以帮助我们更加灵活地解决各种不同形式的一元二次方程,提高我们的数学解题能力。
数学一元二次方程公式定理的知识点总结 篇三
1、平方与平方根
1。1面积与平方
(1)任意两个正数的和的平方,等于这两个数的平方和
(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍
任意两个有理数的和(或差)的平方,等于这两个数的平方和,再加上(或减去)这两个数乘积的2倍
1。2平方根
1。正数有两个平方根,这两个平方根互为相反数;
2。零只有一个平方根,它就是零本身;
3。负数没有平方根
1。4实数
无限不循环小数叫做无理数
有理数和无理数统称为实数
2、平方根的运算
2。1算术平方根的性质
性质1一个非负数的算术平方根的平方等于这个数本身
性质2一个数的平方的算术平方根等于这个数的绝对值
2。2算术平方根的乘、除运算
1。算术平方根的乘法
sqrt(a)?sqrt(b)=sqrt(ab)(a>=0,b>=0)
2。算术平方根的除法
sqrt(a)/sqrt(b)=sqrt(a/b)(a>=0,b>0)
通过分子、分母同乘以一个式子把分母中的根号化去火把根号中的分母化去,叫做分母有理化
(1)被开方数的每个因数的指数都小于2;(2)被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根
2。3算术平方根的加、减运算
如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根
3、一元二次方程及其解法
3。1一元二次方程
只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程
3。2特殊的一元二次方程的解法
3。3一般的一元二次方程的解法——配方法
用配方法解一元二次方程的一般步骤是:
1。化二次项系数为1用二次项系数去除方程两边,将方程化为x^2+px+q=0的形式
2。移项把常数项移至方程右边,将方程化为x^2+px=—q的形式
3。配方方程两边同时加上“一次项系数一半的平方”,是方程左边成为含有未知数的完全平方形式,右边是一个常数
4。有平方根的定义,可知
(1)当p^2/4—q>0时,原方程有两个实数根;
(2)当p^2/4—q=0,原方程有两个相等的实数根(二重根);
(3)当p^2/4—q<0,原方程无实根
3。4一元二次方程的求根公式
一元二次方程ax^2+bx+c=0(a!=0)的求根公式:
当b^2—4ac>=0时,x1,2=(—b(+,—)sqrt(b^2—4ac))/2a
3。5一元二次方程根的判别式
方程ax^2+bx+c=0(a!=0)
当delta=b^2—4ac>0时,有两个不相等的实数根;
当delta=b^2—4ac=0时,有两个相等的实数根;
当delta=b^2—4ac<0时,没有实数根
3。6一元二次方程的根与系数的关系
以两个数x1,x2为根的一元二次方程(二次项系数为1)是x^2—(x1+x2)x+x1?x2=0
4、解应用问题
[数学一元二次方程公式定理的知识点总结]