高三数学三角函数公式

  锐角三角函数公式

  sin =的对边 / 斜边

  cos =的邻边 / 斜边

  tan =的对边 / 的邻边

  cot =的邻边 / 的对边

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3=4sinsin(/3+)sin(/3-)

  cos3=4coscos(/3+)cos(/3-)

  tan3a = tan a tan(/3+a) tan(/3-a)

  三倍角公式推导

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  辅助角公式

  Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B

  降幂公式

  sin^2()=(1-cos(2))/2=versin(2)/2

  cos^2()=(1+cos(2))/2=covers(2)/2

  tan^2()=(1-cos(2))/(1+cos(2))

  推导公式

  tan+cot=2/sin2

  tan-cot=-2cot2

  1+cos2=2cos^2

  1-cos2=2sin^2

  1+sin=(sin/2+cos/2)^2

  =2sina(1-sina)+(1-2sina)sina

  =3sina-4sina

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cosa-1)cosa-2(1-sina)cosa

  =4cosa-3cosa

  sin3a=3sina-4sina

  =4sina(3/4-sina)

  =4sina[(3/2)-sina]

  =4sina(sin60-sina)

  =4sina(sin60+sina)(sin60-sina)

  =4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

  =4sinasin(60+a)sin(60-a)

  cos3a=4cosa-3cosa

  =4cosa(cosa-3/4)

  =4cosa[cosa-(3/2)]

  =4cosa(cosa-cos30)

  =4cosa(cosa+cos30)(cosa-cos30)

  =4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}

  =-4cosasin(a+30)sin(a-30)

  =-4cosasin[90-(60-a)]sin[-90+(60+a)]

  =-4cosacos(60-a)[-cos(60+a)]

  =4cosacos(60-a)cos(60+a)

  上述两式相比可得

  tan3a=tanatan(60-a)tan(60+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(++)=sincoscos+cossincos+coscossin-sinsinsin

  cos(++)=coscoscos-cossinsin-sincossin-sinsincos

  tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

  两角和差

  cos(+)=coscos-sinsin

  cos(-)=coscos+sinsin

  sin()=sincoscossin

  tan(+)=(tan+tan)/(1-tantan)

  tan(-)=(tan-tan)/(1+tantan)

  和差化积

  sin+sin = 2 sin[(+)/2] cos[(-)/2]

  sin-sin = 2 cos[(+)/2] sin[(-)/2]

  cos+cos = 2 cos[(+)/2] cos[(-)/2]

  cos-cos = -2 sin[(+)/2] sin[(-)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  积化和差

  sinsin = [cos(-)-cos(+)] /2

  coscos = [cos(+)+cos(-)]/2

  sincos = [sin(+)+sin(-)]/2

  cossin = [sin(+)-sin(-)]/2

  诱导公式

  sin(-) = -sin

  cos(-) = cos

  tan (a)=-tan

  sin(/2-) = cos

  cos(/2-) = sin

  sin(/2+) = cos

  cos(/2+) = -sin

  sin() = sin

  cos() = -cos

  sin() = -sin

  cos() = -cos

  tanA= sinA/cosA

  tan(/2+)=-cot

  tan(/2-)=cot

  tan()=-tan

  tan()=tan

  诱导公式记背诀窍:奇变偶不变,符号看象限

  万能公式

  sin=2tan(/2)/[1+tan^(/2)]

  cos=[1-tan^(/2)]/1+tan^(/2)]

  tan=2tan(/2)/[1-tan^(/2)]

  其它公式

  (1)(sin)^2+(cos)^2=1

  (2)1+(tan)^2=(sec)^2

  (3)1+(cot)^2=(csc)^2

  证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可

  (4)对于任意非直角三角形,总有

  tanA+tanB+tanC=tanAtanBtanC

  证:

  A+B=-C

  tan(A+B)=tan(-C)

  (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得证

  同样可以得证,当x+y+z=nZ)时,该关系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

  cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及

  sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  

[高三数学三角函数公式]

相关文章

《听妈妈讲那过去的事情》简谱

《听妈妈讲那过去的事情》简谱《听妈妈讲那过去的事情》歌词月亮在白莲花般的云朵里穿行晚风吹来一阵阵快乐的歌声我们坐在高高的谷堆旁边听妈妈讲那过去的事情那时侯妈妈没有土地全部生活都在两只手上汗水流在地主火...
资料大全2018-01-03
《听妈妈讲那过去的事情》简谱

药学专业专科就业前景

药学在世界各大经济领域可以说是发展最快的门类之一,医药公司的年经济效益增长率已经高于国家的经济增长速度。并且,由于它关系着每个人的健康,越来越受到国家和社会的重视。我国的药学事业近几年的发展也是非常迅...
资料大全2014-06-08
药学专业专科就业前景

广告词错别字改正确

超级搞笑广告词错别字改正确1、百事:加班无极限,广告词错别字改正确。2、安踏:我加班,我喜欢!3、国美:每一天,加一点。4、汇仁肾宝:他加我也加。5、中国联通:...
资料大全2019-01-06
广告词错别字改正确

浅谈纪伯伦《先知》对人生和社会的启示

摘要:卡里·纪伯伦一位与泰戈尔同样的东方创作天才,站在东西方文化桥梁上的巨人。他的书《先知》是东方送给西方的礼物。书以一位饱经沧桑的过来人经验之谈,涉及了“爱”、“婚姻”、“孩子”、“自由”、“理想与...
资料大全2012-04-07
浅谈纪伯伦《先知》对人生和社会的启示

感恩主题班会的活动记录

篇一一、班会目的:目的一:让学生了解感恩,即让学生懂得为什么要感恩,感恩主题班会的活动记录。 目的二:让学生懂得怎样去感恩老师。目的三:增强学生的感恩观念,培养感恩的言行。 ...
资料大全2014-04-06
感恩主题班会的活动记录

初中语文作业管理方案

为了确保工作或事情能高效地开展,常常需要提前进行细致的方案准备工作,方案的内容多是上级对下级或涉及面比较大的工作,一般都用带“文件头”形式下发。方案应该怎么制定才好呢?下面是小编帮大家整理的初中语文作...
资料大全2017-03-03
初中语文作业管理方案