公式法的教案(通用3篇)
公式法的教案 篇一
在数学教学中,公式法是一种非常重要的解题方法。通过公式法,学生可以更加简便地解决各种数学问题,提高解题效率和准确性。下面我将为大家分享一个关于二次方程的公式法教案。
一、教学目标
1. 理解二次方程的定义和性质。
2. 掌握使用公式法解决二次方程的方法。
3. 能够灵活运用公式法解决不同类型的二次方程问题。
二、教学重点和难点
1. 二次方程的概念和基本性质。
2. 公式法的具体步骤和注意事项。
三、教学准备
1. 教师准备好板书、教学PPT等教学工具。
2. 学生准备好笔记本、铅笔等学习用品。
四、教学过程
1. 引入:通过一个生动有趣的例子引入二次方程的概念,激发学生的学习兴趣。
2. 讲解:首先讲解二次方程的定义和性质,然后详细讲解公式法的步骤和解题技巧。
3. 练习:让学生进行一些简单的例题练习,巩固所学知识。
4. 拓展:设计一些拓展性的题目,让学生运用公式法解决更加复杂的问题。
5. 总结:对本节课所学内容进行总结,并强调公式法在解决二次方程中的重要性。
五、课堂作业
布置一些相关的练习题,让学生进行课后巩固和复习。
通过以上教学设计,学生可以在轻松愉快的氛围中学习到二次方程的公式法,提高解题能力和数学水平。希望同学们能够认真对待每一堂数学课,不断提升自己的数学能力。
公式法的教案 篇二
公式法在数学教学中扮演着重要的角色,它不仅可以帮助学生更快更准确地解决问题,还可以培养学生的逻辑思维和解决问题的能力。下面我将分享一个关于三角函数的公式法教案。
一、教学目标
1. 理解三角函数的基本概念和性质。
2. 掌握使用公式法解决三角函数问题的方法。
3. 能够熟练运用公式法解决不同类型的三角函数问题。
二、教学重点和难点
1. 三角函数的定义和基本性质。
2. 公式法在解决三角函数问题中的应用。
三、教学准备
1. 教师准备好相关教学资料和案例。
2. 学生准备好笔记本、计算器等学习用具。
四、教学过程
1. 引入:通过一个生动的例子引入三角函数的概念,激发学生的学习兴趣。
2. 讲解:讲解三角函数的定义和性质,然后详细讲解如何使用公式法解决三角函数问题。
3. 练习:让学生进行一些简单的例题练习,巩固所学知识。
4. 拓展:设计一些拓展性的题目,让学生灵活运用公式法解决更加复杂的问题。
5. 总结:对本节课所学内容进行总结,并强调公式法在解决三角函数问题中的重要性。
五、课堂作业
布置一些相关的练习题,让学生进行巩固和复习。
通过以上教学设计,学生可以在轻松愉快的氛围中学习到三角函数的公式法,提高解题能力和数学水平。希望同学们能够积极参与课堂,主动思考和探索,不断提高自己的数学素养。
公式法的教案 篇三
公式法的教案范文
教学内容
1、一元二次方程求根公式的推导过程;
2、公式法的概念;
3、利用公式法解一元二次方程、
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程、
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程、
重难点关键
1、重点:求根公式的推导和公式法的应用、
2、难点与关键:一元二次方程求根公式法的推导、
教学过程
一、复习引入
(学生活动)用配方法解下列方程
(1)6x2—7x+1=0 (2)4x2—3x=52
(老师点评) (1)移项,得:6x2—7x=—1
二次项系数化为1,得:x2— x=—
配方,得:x2— x+( )2=— +( )2
(x— )2=
x— =± x1= + = =1
x2=— + = =
(2)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评)、
(1)移项;
(2)化二次项系数为1;
(3)方程两边都加上一次项系数的一半的平方;
(4)原方程变形为(x+m)2=n的形式;
(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解、
二、探索新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题、
问题:已知ax2+bx+c=0(a≠0)且b2—4ac≥0,试推导它的两个根x1= ,x2=
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去、
解:移项,得:ax2+bx=—c
二次项系数化为1,得x2+ x=—
配方,得:x2+ x+( )2=— +( )2 即(x+ )2=
∵b2—4ac≥0且4a2>0 ∴ ≥0
直接开平方,得:x+ =± 即x=
∴x1= ,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b—4ac≥0时,将a、b、c代入式子x= 就得到方程的根、
(2)这个式子叫做一元二次方程的求根公式、
(3)利用求根公式解一元二次方程的方法叫公式法、
(4)由求根公式可知,一元二次方程最多有两个实数根、
例1、用公式法解下列方程、
(1)2x2—4x—1=0 (2)5x+2=3x2 (3)(x—2)(3x—5)=0 (4)4x2—3x+1=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可、
解:(1)a=2,b=—4,c=—1
b2—4ac=(—4)2—4×2×(—1)=24>0
x= ∴x1= ,x2=
(2)将方程化为一般形式3x2—5x—2=0
a=3,b=—5,c=—2
b2—4ac=(—5)2—4×3×(—2)=49>0
x= x1=2,x2=—
(3)将方程化为一般形式3x2—11x+9=0
a=3,b=—11,c=9
b2—4ac=(—11)2—4×3×9=13>0
∴x= ∴x1= ,x2=
(3)a=4,b=—3,c=1
b2—4ac=(—3)2—4×4×1=—7<0
因为在实数范围内,负数不能开平方,所以方程无实数根、
三、巩固练习
教材P42 练习1、(1)、(3)、(5)
四、应用拓展
例2、某数学兴趣小组对关于x的方程(m+1) +(m—2)x—1=0提出了下列问题、
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程、
(2)若使方程为一元二次方程m是否存在?若存在,请求出、
你能解决这个问题吗?
分析:能、(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0、
(2)要使它为一元一次方程,必须满足:
① 或② 或③
解:(1)存在、根据题意,得:m2+1=2
m2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=—1时,m+1=—1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2—1—x=0
a=2,b=—1,c=—1
b2—4ac=(—1)2—4×2×(—1)=1+8=9
x= x1=,x2=—
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=— 、
(2)存在、根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m—2)=2m—1=—1≠0
所以m=0满足题意、
②当m2+1=0,m不存在、
③当m+1=0,即m=—1时,m—2=—3≠0
所以m=—1也满足题意、
当m=0时,一元一次方程是x—2x—1=0,
解得:x=—1
当m=—1时,一元一次方程是—3x—1=0
解得x=—
因此,当m=0或—1时,该方程是一元一次方程,并且当m=0时,其根为x=—1;当m=—1时,其一元一次方程的根为x=— 、
五、归纳小结
本节课应掌握:
(1)求根公式的.概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程;
(4)初步了解一元二次方程根的情况、
六、布置作业
1、教材P45 复习巩固4、
文章来
公式法教案文章来 2、选用作业设计:
一、选择题
1、用公式法解方程4x2—12x=3,得到( )、
A、x= B、x= C、x= D、x=
2、方程 x2+4 x+6 =0的根是( )、
A、x1= ,x2= B、x1=6,x2= C、x1=2 ,x2= D、x1=x2=—
3、(m2—n2)(m2—n2—2)—8=0,则m2—n2的值是( )、
A、4 B、—2 C、4或—2 D、—4或2
二、填空题
1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________、
2、当x=______时,代数式x2—8x+12的值是—4、
3、若关于x的一元二次方程(m—1)x2+x+m2+2m—3=0有一根为0,则m的值是_____、
三、综合提高题
1、用公式法解关于x的方程:x2—2ax—b2+a2=0、
2、设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=— ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值、
3、某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费、
(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)
(2)下表是这户居民3月、4月的用电情况和交费情况
月份 用电量(千瓦时) 交电费总金额(元)
3 80 25
4 45 10
根据上表数据,求电厂规定的A值为多少?
答案:
一、1、D 2、D 3、C
二、1、x= ,b2—4ac≥0 2、4 3、—3
三、1、x= =a±│b│
2、(1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,
∴x1= ,x2=
∴x1+x2= =— ,
x1·x2= · =
(2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0
原式=ax13+bx12+c1x1+ax23+bx22+cx2
=x1(ax12+bx1+c)+x2(ax22+bx2+c)=0
3、(1)超过部分电费=(90—A)· =— A2+ A
(2)依题意,得:(80—A)· =15,A1=30(舍去),A2=50
课后教学反思:_______________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
______________________________________________________________________________________________________________________________________________________