合比性质和等比性质例 - 初中数学第四册教案(通用3篇)

合比性质和等比性质例 - 初中数学第四册教案 篇一

在初中数学第四册中,我们学习了合比性质和等比性质,这两个性质在数学中有着重要的作用。下面我们来看看一些例题,帮助我们更好地理解这两个性质。

首先让我们来看一个关于合比性质的例题:已知a:b=2:3, b:c=4:5,求a:b:c的值。根据合比性质,我们知道a:b:c=(a/b)*(b/c)=a/c,所以a:b:c=2:5。通过这个例题,我们可以看到合比性质的运用,帮助我们求解比例的值。

接下来我们来看一个关于等比性质的例题:已知一个等比数列的第一项为2,公比为3,求第五项的值。根据等比数列的性质,我们知道等比数列的第n项可以表示为a_n=a_1*q^(n-1),其中a_n为第n项,a_1为首项,q为公比。所以第五项的值为2*3^(5-1)=162。通过这个例题,我们可以看到等比性质的运用,帮助我们求解等比数列的项。

通过这两个例题,我们可以看到合比性质和等比性质在数学中的重要性,它们不仅可以帮助我们解决问题,还可以帮助我们更好地理解数学知识。希望同学们能够在学习中认真掌握这两个性质,提高数学能力。

合比性质和等比性质例 - 初中数学第四册教案 篇二

在初中数学第四册中,合比性质和等比性质是我们需要深入理解和掌握的内容。下面我们通过一些例题来帮助我们更好地理解这两个性质。

首先让我们来看一个关于合比性质的例题:已知a:b=3:4, b:c=5:6,求a:b:c的值。根据合比性质,我们知道a:b:c=(a/b)*(b/c)=a/c,所以a:b:c=3:4:6。通过这个例题,我们可以看到合比性质的运用,帮助我们求解比例的值。

接下来我们来看一个关于等比性质的例题:已知一个等比数列的第一项为5,公比为2,求前四项的和。根据等比数列的性质,我们知道等比数列的前n项和可以表示为S_n=a_1*(q^n-1)/(q-1),其中S_n为前n项和,a_1为首项,q为公比。所以前四项的和为5*(2^4-1)/(2-1)=30。通过这个例题,我们可以看到等比性质的运用,帮助我们求解等比数列的和。

通过这两个例题,我们可以看到合比性质和等比性质在数学中的实际运用,它们可以帮助我们解决实际问题,提高数学解题能力。希望同学们能够在学习中认真掌握这两个性质,加深对数学知识的理解和应用。

合比性质和等比性质例 - 初中数学第四册教案 篇三

合比性质和等比性质例 - 初中数学第四册教案

石佛镇素质教育研讨会

教研课

教案设计

教者:龙秀明

教学课题:合比性质和等比性质

教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形

2、会将合比性质、等比性质用于比例线段。

3、提高学生类比联想、推广命题的能力。

教学重、难点:

熟练地、灵活地运用合比性质与等比性质。

课前准备:

小黑板、幻灯机及幻灯片。

教学过程:

一、复习引入:

我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆

1、什么叫线段的比?

2、什么叫成比例线段?

我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?

这就是本节课我们将要研究的比例的合比性质与等比性质。(出示课题:合比性质与等比性质)

那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)

下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)

请看幻灯(投影显示)

二、(用特殊化方法)探索合比性质。

1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即AB=BC=CD=DE=EF。

2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?

又设在l1上截得的一等份为m,问AD=?DF=?

观察以上分析,可得出一个什么样的结论?

又观察 与 有什么关系?对于一般的比例

式都有这一个关系吗?请猜一猜。

猜想:学生口述(同学间可相互讨论、研究)

教师根据学生口述、写出:

如果

3、证明猜想,得出合比性质,

我们这个猜想,是否正确呢?

(1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)

证法二、(利用等比性质2)

∵ ∴ ∴

(2)类比联想,得到分比性质。

如果

学生自由讨论,可仿上边自己证明结论。

在今后,这两种情形都叫合比性质,即

如果

(3)理解合比性质的内容,师生一起用文字语言叙述。

4、类比联想,将合比性质推广。

在合比性质的表达式中,

(1)比例的二、四项保持不变,

(2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。

由此,可作出以下类比联想,并使用比例的基本性质进行证明。

猜想一,(教师引导) 如果

二 …… 如果

三 …… 如果 等等。

对这几个猜想出来的问题,其基本思考方法有两种:

(1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。

①同时交换比例的内或外项,(更比)

如果

②同时交换比例的前后项,(反比)

如果

比如证明猜想三,如果

(2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)

三、利用合比性质来证明等比性质的特例,并推广。

1、练习(投影显示)

证明:

2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的比个数进行推广。

如果

3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。

4、强调证明方法“设比法”。

设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。

四、简单运用(出示小黑板)

(1)已知: ,

(2)已知:

(3)已知: =

注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。如第三题一问

解法1、

解法2、

第二问可用解法2。

② 还常以另一种形式出现,即x:y:z=4:3:6但此时不能设 。

五、师生共同小结,看书完成P203练习

1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。

2、证明两个性质时所用到的“设比法”的证明方法。

3、类比联想,推广命题,由特殊到一般,再进行证明的方法。

六、练习:(1)已知 求 的值;

(2)已知 求 的值;

(3)已知 求 的值;

(4)已知 试求 的值。

由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。

板书设计:

合比性质与等比性质

1、合比性质: 2、等比性质: 小黑板①②③

内容 内容 小结1、

证明: 证明: 2、

推广① 推广

石佛镇素质教育研讨会

教研课

教案设计

教者:龙秀明

学课题:合比性质和等比性质

教学目标:1、掌握合比性质的.等比性质,并会用它们进行简单的比例变形

2、会将合比性质、等比性质用于比例线段。

3、提高学生类比联想、推广命题的能力。

教学重、难点:

熟练地、灵活地运用合比性质与等比性质。

课前准备:

小黑板、幻灯机及幻灯片。

教学过程:

一、复习引入:

我们在前边学习了线段的比,比例的有关概念及性质,那么请同学们回忆

1、什么叫线段的比?

2、什么叫成比例线段?

我们还学习了比例的基本性质,那么,除此之外,比例还有一些什么性质呢?

这就是本节课我们将要研究的比例的合比性质与等比性质。(出示课题:合比性质与等比性质)

那么,通过本节课的学习我们要达到一个什么样的要求呢?(出示小黑板)看学习目标1、2,(全班同学齐读)

下边请同学们再回忆,我们在上一章学习的平等线等分线段定理是如何叙述的?(抽同学回答)

请看幻灯(投影显示)

二、(用特殊化方法)探索合比性质。

1、复习,已知:一组平行线在直线l上截得的线段AB=BC=CD=DE=EF则由平行线等分线段定理可得一个结论:即AB=BC=CD=DE=EF。

2、将上述结论改写成比例式,由此猜想得出结论,引导学生思考:如果设在l上截得的每一份为k,问AD=?DF=?

又设在l1上截得的一等份为m,问AD=?DF=?

观察以上分析,可得出一个什么样的结论?

又观察 与 有什么关系?对于一般的比例

式都有这一个关系吗?请猜一猜。

猜想:学生口述(同学间可相互讨论、研究)

教师根据学生口述、写出:

如果

3、证明猜想,得出合比性质,

我们这个猜想,是否正确呢?

(1)启发学生观察,已知与未知的关系,寻找证明思路,证法一:(设比法)

证法二、(利用等比性质2)

∵ ∴ ∴

(2)类比联想,得到分比性质。

如果

学生自由讨论,可仿上边自己证明结论。

在今后,这两种情形都叫合比性质,即

如果

(3)理解合比性质的内容,师生一起用文字语言叙述。

4、类比联想,将合比性质推广。

在合比性质的表达式中,

(1)比例的二、四项保持不变,

(2)比例的前后磺对应求和或差,作为新比例式的第一、三比例项。

由此,可作出以下类比联想,并使用比例的基本性质进行证明。

猜想一,(教师引导) 如果

二 …… 如果

三 …… 如果 等等。

对这几个猜想出来的问题,其基本思考方法有两种:

(1)通过一定的方法,将它们变形利用合比性质的结果,证明时,可灵活运用以下变形方法。

①同时交换比例的内或外项,(更比)

如果

②同时交换比例的前后项,(反比)

如果

比如证明猜想三,如果

(2)对原合比性质的证明方法进行类比、联想来进行证明(设比法)

三、利用合比性质来证明等比性质的特例,并推广。

1、练习(投影显示)

证明:

2、观察上述练习的两个结论,并对一般情况作出猜想,对练习中相等的比值的比个数进行推广。

如果

3、利用设比法进行证明,得出等比性质,同学们自己练习,后与教材P20对比。

4、强调证明方法“设比法”。

设几个相等的比值为k,用它们表示出每个比的前项(或后项)利用代数运算证明比例问题,这种思想方法在比例问题中经常用到。

四、简单运用(出示小黑板)

(1)已知: ,

(2)已知:

(3)已知: =

注意:①合比性质与等比性质的证明方法和结论都很重要,都可用来证明有关比例式的问题。如第三题一问

解法1、

解法2、

第二问可用解法2。

② 还常以另一种形式出现,即x:y:z=4:3:6但此时不能设 。

五、师生共同小结,看书完成P203练习

1、合比性质,等比性质及常用变形,尤其注意等比性质的使用条件。

2、证明两个性质时所用到的“设比法”的证明方法。

3、类比联想,推广命题,由特殊到一般,再进行证明的方法。

六、练习:(1)已知 求 的值;

(2)已知 求 的值;

(3)已知 求 的值;

(4)已知 试求 的值。

由(4)题思考通过作第(4)题得出结论,结合前边所学内容猜想,你能得出什么结论,并试证之。

板书设计:

合比性质与等比性质

1、合比性质: 2、等比性质: 小黑板①②③

内容 内容 小结1、

证明: 证明: 2、

推广① 推广

合比性质和等比性质例 —— 初中数学第四册教案

相关文章

小学二年级《轴对称图形》教案【通用3篇】

作为一位优秀的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?以下是小编为大家整理的小学二年级《轴对称图形》教案范文,仅供...
教案大全2016-01-02
小学二年级《轴对称图形》教案【通用3篇】

《受伤了怎么办》的安全教案(实用4篇)

导语:平时培养让幼儿培养互相关心、互相帮助的好品质,引导幼儿学会避免受伤,初步培养幼儿的安全意识,提高自我保护能力,快来看看幼儿园小班《受伤了怎么办》的安全教案吧。 《受伤了怎么办》的安全教案1 活动...
教案大全2019-05-08
《受伤了怎么办》的安全教案(实用4篇)

小学二年级语文《称赞》教案【实用3篇】

学习目标:1、能有感情地朗读课文,积累语言,根据画面配音。2、创设情境,自主感悟,体会称赞带来的快乐。3、善于发现别人的优点。学习重点:有感情地朗读课文,积累语言。学习难点:体会称赞带来的快乐,善于发...
教案大全2019-01-09
小学二年级语文《称赞》教案【实用3篇】

科学公开课小班教案【经典6篇】

作为一名教学工作者,往往需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?以下是小编为大家整理的科学公开课小班教案(通用5篇),仅供参...
教案大全2012-07-09
科学公开课小班教案【经典6篇】

小学综合实践活动教案

综合实践活动是现代教育中的个性内容、体验内容和反思内容,与传统教育片面追求教育个体的发展、共性和知识有所不同,综合实践活动提供了一个相对独立的学习生态化空间,学生是这个空间的主导者,学生具有整个活动绝...
教案大全2015-08-01
小学综合实践活动教案

小学六年级体育与保健实践课教案(精彩3篇)

班级:六(2)班 日期: 2001.12.16 &nbsp...
教案大全2011-05-08
小学六年级体育与保健实践课教案(精彩3篇)