初中数学教案范文精选(精简5篇)

初中数学教案范文精选 篇一

标题:利用实际问题引入解一元一次方程的教学

教学目标:

1. 熟练掌握解一元一次方程的方法;

2. 能够灵活运用解一元一次方程解决实际问题;

3. 培养学生分析问题、解决问题的能力。

教学重点:

1. 掌握解一元一次方程的基本方法;

2. 运用所学知识解决实际问题。

教学难点:

1. 将实际问题转化为数学问题;

2. 灵活应用解一元一次方程的方法解决问题。

教学准备:

1. 实际问题的案例;

2. 课件、黑板、彩色粉笔等教学工具。

教学步骤:

1. 引入:通过一个实际问题引入本节课的主题,让学生感受到解一元一次方程的重要性;

2. 提出问题:给学生提出一个简单的实际问题,引导学生思考如何用数学方法解决;

3. 解题过程:讲解解一元一次方程的基本方法,并结合实际问题进行示范;

4. 练习:让学生进行一些解一元一次方程的练习题,巩固所学知识;

5. 实战演练:设计一些实际问题,让学生利用所学知识解决;

6. 总结:对本节课的内容进行总结,强调解一元一次方程的重要性和实用性。

教学反思:

通过本节课的教学,学生不仅能够掌握解一元一次方程的方法,还能够应用到实际问题中去解决。通过引入实际问题,激发了学生的学习兴趣,提高了他们的学习积极性。在今后的教学中,可以增加更多的实际问题,让学生在解题过程中更加深入地理解数学知识的应用。

初中数学教案范文精选 篇二

标题:利用游戏提高学生对几何知识的理解

教学目标:

1. 熟练掌握几何知识的相关概念;

2. 提高学生对几何知识的兴趣和理解;

3. 培养学生的团队合作和思维能力。

教学重点:

1. 几何知识的相关概念;

2. 游戏规则和策略的理解。

教学难点:

1. 如何将几何知识与游戏相结合,提高学生的学习兴趣;

2. 如何引导学生在游戏中灵活运用几何知识。

教学准备:

1. 几何知识的相关教学材料;

2. 游戏道具、规则说明等。

教学步骤:

1. 引入:通过一个有趣的问题引入本节课的主题,激发学生对几何知识的兴趣;

2. 游戏介绍:向学生介绍本节课将要进行的游戏,说明规则和目的;

3. 游戏过程:让学生分组进行游戏,引导他们在游戏中灵活运用几何知识;

4. 游戏分析:在游戏结束后,让学生分享自己的策略和体会,引导他们总结几何知识与游戏的联系;

5. 总结:对本节课的内容进行总结,强调几何知识的重要性和实用性。

教学反思:

通过本节课的教学,学生不仅在游戏中愉快地学习了几何知识,还培养了团队合作和思维能力。通过引入游戏元素,让学生在轻松愉快的氛围中学习,更容易理解和掌握知识。在今后的教学中,可以增加更多有趣的教学活动,让学生在愉快的氛围中不断提高自己的数学水平。

初中数学教案范文精选 篇三

比例线段

教学建议

知识结构

重难点分析

本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.

本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的.

教法建议

1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加学生学习的主动性

2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想

3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较

4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感

5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理

教学设计示例1

(第1课时)

一、教学目标

1.理解线段的比的概念.

2.通过与小学知识到比较,初步培养学生“类比”的数学思想.

3.通过线段的比的有关计算,培养学习的计算能力.

4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育.

二、教学设计

先学后做,启发引导

三、重点及难点

1.教学重点 两条线段比的概念.

2.教学难点 正确理解两条线段的比及应用.

四、课时安排

1课时

五、教具学具准备

股影仪、胶片、常用画图工具

六、教学步骤

【复习提问】

找学生回答小学学过的比、比的前项和后项的概念.

(两个数相除又叫做两数的比,记作

或a:b,其中a叫比的前项,b叫比的后项)

【讲解新课】

把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:

等.

可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.

一般地:若a、b的长度分别是m、n(单位相同),那么就说这两条线段的比是

,或写成

,和数的比一样,a叫比的前项,b叫比的后项. 关于两条线段比的概念,教学中要揭示它的实质,即

表示a是b的k倍,这是学生已有的知识,较易理解,也容易使学生注意到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注意尺度.

就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注意的问题,归纳出:

(l)两条线段的比就是它们的长度的比.

(2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.

(3)两条线段的比值总是正数.(并不都是正数)

(4)除了a=b之外,

.

互为倒数.

例1 见教材P202.

讲解完例1后:

(l)提问学生AB是

的多少倍,

是AB的多少倍,以加深学生对线段比的逾义的理解. (2)给出:比例尺=

,就例1的图上,若图距是8cm的两地,实际距离是多少?

另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习兴趣.

例2 见教材P202.

讲解完例2后:

(l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生认识这种三角形中边的比与长度无关.

(2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为

.

常识2:等腰直角三角形三边(从小到大)的比为1:1:

.

学生掌握了这些常识可有两点好处:

①知道例2中“

”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.

②这些题目若改成“填空题”,可避免一些不必要的计算.从而提高做题速度.这样不仅培养了能力,而且在考试中也受益匪浅.

因此,今后如遇到和此常识有关的知识要反复渗透,反复给学生强调,让它扎根于学生的下意识中。

【小结】

1.两条线段比的概念以及应注意的问题.

2.会求两条线段的比.

七、布置作业

教材P210中2、3.

八、板书设计

初中数学教案范文精选 篇四

两圆的公切线

第一课时 两圆的公切线(一)

教学目标:

(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;

(2)培养学生的归纳、总结能力;

(3)通过两圆外公切线长的求法向学生渗透“转化”思想.

教学重点:

理解两圆相切长等有关概念,两圆外公切线的求法.

教学难点:

两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.

教学活动设计

(一)实际问题(引入)

很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)

(二)两圆的公切线概念

1、概念:

教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:

和两圆都相切的直线,叫做两圆的公切线.

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.

(3)公切线的长:公切线上两个切点的距离叫做公切线的长.

2、理解概念:

(1)公切线的长与切线的长有何区别与联系?

(2)公切线的长与公切线又有何区别与联系?

(1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.

(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.

(三)两圆的位置与公切线条数的关系

组织学生观察、概念、概括,培养学生的学习能力.添写教材P143练习第2题表.

(四)应用、反思、总结

例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.

分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)

解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.

过 O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,

于是有

O1C⊥C O2,O1C= AB,O1A=CB.

在Rt△O2CO1和.

O1O2=13,O2C= O2B- O1A=5

AB= O1C=

(cm).

反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.

例2*、如图,已知⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长.

分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解.证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP.因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解.

解:过点P作两圆的公切线CD

∵ AB是⊙O1和⊙O2的切线,A、B为切点

∴∠CPA=∠BAP  ∠CPB=∠ABP

又∵∠BAP+∠CPA+∠CPB+∠ABP=180°

∴ 2∠CPA+2∠CPB=180°

∴∠CPA+∠CPB=90°  即∠APB=90°

在 Rt△APB中,AB2=AP2+BP2

说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.

(五)巩固练习

1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )

(A)直角三角形 (B)等腰三角形 (C)等边三角形 (D)以上答案都不对.

此题考察外公切线与外公切线长之间的差别,答案(D)

2、外公切线是指

(A)和两圆都祖切的直线 (B)两切点间的距离

(C)两圆在公切线两旁时的公切线 (D)两圆在公切线同旁时的公切线

直接运用外公切线的定义判断.答案:(D)

3、教材P141练习(略)

(六)小结(组织学生进行)

知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

能力:归纳、概括能力和求外公切线长的能力;

思想:“转化”思想.

(七)作业:P151习题10,11.

第二课时 两圆的公切线(二)

教学目标:

(1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;

(2)培养的迁移能力,进一步培养学生的归纳、总结能力;

(3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.

教学重点:

两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.

教学难点:

两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.

教学活动设计

(一)复习基础知识

(1)两圆的公切线概念:公切线、内外公切线、内外公切线的长.

(2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)

(二)应用、反思

例1、(教材例2)已知:⊙O1和⊙O2的半径分别为4厘米和2厘米,圆心距 为10厘米,AB是⊙O1和⊙O2的一条内公切线,切点分别是A,B.

求:公切线的长AB。

组织学生分析,迁移外公切线长的求法,既培养学生解决问题的能力,同时也培养学生学习的迁移能力.

解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.

过 O1作O1C⊥O2B,交O2B的延长线于C,

则O1C= AB,O1A=BC.

在Rt△O2CO1和.

O1O2=10,O2C= O2B+ O1A=6

∴O1C=

(cm).

∴AB=8(cm)

反思:与外离两圆的内公切线有关的计算问题,常构造如此题的直角梯行及直角三角形,在Rt△O2CO1中,含有内公切线长、圆心距、两半径和重要数量.注意用解直角三角形的知识和几何知识综合去解构造后的直角三角形.

例2 (教材例3)要做一个图那样的矿型架,将两个钢管托起,已知钢管的外径分别为200毫米和80毫米,求V形角α的度数.

解:(略)

反思:实际问题经过抽象、化简转化成数学问题,应用数学知识来解决,这是解决实际问题的重要方法.它属于简单的数学建模.

组织学生进行,教师引导.

归纳:(1)用解直角三角形的有关知识可得:当公切线长l、两圆的两半径和R+r、圆心距d、两圆公切线的夹角α四个量中已知两个量时,就可以求出其他两个量.

;

(2)上述问题可以通过相似三角形和解三角形的知识解决.

(三)巩固训练

教材P142练习第1题,教材P145练习第1题.

学生独立完成,教师巡视,发现问题及时纠正.

(四)小结

(1)求两圆的内公切线,“转化”为解直角三角形问题.公切线长、圆心距、两半径和三个量中已知任何两个量,都可以求第三个量;

(2)如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上;

(3)求两圆两外(或内)公切线的夹角.

(五)作业

教材P153中12、13、14.

第三课时 两圆的公切线(三)

教学目标:

(1)理解两圆公切线在解决有关两圆相切的问题中的作用, 辅助线规律,并会应用;

(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力.

教学重点:

会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中.

教学难点:

综合知识的灵活应用和综合能力培养.

教学活动设计

(一)复习基础知识

(1)两圆的公切线概念.

(2)切线的性质,弦切角等有关概念.

(二)公切线在解题中的应用

例1、如图,⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,B,C为切点.若连结AB、AC会构成一个怎样的三角形呢?

观察、度量实验(组织学生进行)

猜想:(学生猜想)∠BAC=90°

证明:过点A作⊙O1和⊙O2的内切线交BC于点O.

∵OA、OB是⊙O1的切线,

∴OA=OB.

同理OA=OC.

∴ OA=OB=OC.

∴∠BAC=90°.

反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法.

2、己知:如图,⊙O1和⊙O2内切于P,大圆的弦AB交小圆于C,D.

求证:∠APC=∠BPD.

分析:从条件来想,两圆内切,可能作出的辅助线是作连心线O1O2,或作外公切线.

证明:过P点作两圆的公切线MN.

∵∠MPC=∠PDC,∠MPN=∠B,

∴∠MPC-∠MPN=∠PDC-∠B,

即∠APC=∠BPD.

反思:(1)作了两圆公切线MN后,弦切角就把两个圆中的圆周角联系起来了.要重视MN的“桥梁”作用.(2)此例证角相等的方法是利用已知角的关系计算.

展:(组织学生研究,培养学生深入研究问题的意识)

己知:如图,⊙O1和⊙O2内切于P,大圆⊙O1的弦AB与小圆⊙O2相切于C点.

是否有:∠APC=∠BPC即PC平分∠APB.

答案:有∠APC=∠BPC即PC平分∠APB.如图作辅助线,证明方法步骤参看典型例题中例4.

(三)练习

练习1、教材145练习第2题.

练习2、如图,已知两圆内切于P,大圆的弦AB切小圆于C,大圆的弦PD过C点.

求证:PA·PB=PD·PC.

明:过点P作两圆的公切线EF

∵ AB是小圆的切线,C为切点

∴∠FPC=∠BCP,∠FPB=∠A

又∵∠1=∠BCP-∠A  ∠2=∠FPC-∠FPB

∴∠1=∠2  ∵∠A=∠D,∴△PAC∽△PDB

∴PA·PB=PD·PC

说明:此题在例2题的拓展的基础上解得非常容易.

(三)总结

学习了两圆的公切线,应该掌握以下几个方面

1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上.

2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角

形.

3、常用的辅助线:

(1)两圆在各种情况下常考虑添连心线;

(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线.

4、自己要有深入研究问题的意识,不断反思,不断归纳总结.

(四)作业教材P151习题中15,B组2.

探究活动

问题:如图1,已知两圆相交于A、B,直线CD与两圆分别相交于C、E、F、D.

(1)用量角器量出∠EAF与∠CBD的大小,根据量得结果,请你猜想∠EAF与∠CBD的大小之间存在怎样的关系,并证明你所得到的结论.

(2)当直线CD的位置如图2时,上题的结论是否还能成立?并说明理由.

(3)如果将已知中的“两圆相交”改为“两圆外切于点A”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明.

提示:(1)(2)(3)都有∠EAF+∠CBD=180°.证明略(如图作辅助线).

说明:问题从操作测量得到的实验数据入手,进行数据分析,归纳得出猜想,进而证明猜想成立.这也是数学发现的一种方法.第(2)、(3)题是对第(1)题结论的推广和特殊化.第(3)题中若CD移动到与两圆相切于点C、D,那么结论又将变为∠CAD=90°.

初中数学教案范文精选 篇五

]

相关文章

语文课文小壁虎借尾巴优秀教案(通用6篇)

作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编收集整理的语文课文小壁虎借尾巴优...
教案大全2013-05-03
语文课文小壁虎借尾巴优秀教案(通用6篇)

英语教案-unin15 Study skills教学目标

一、本单元的语言知识主要有: 1. remind sb. of sth. 2. fix a date for… 3. on作“关于;论及”的用法 4. “be + to be + 过去分词”表...
教案大全2014-06-05
英语教案-unin15 Study skills教学目标

幼儿园认识颜色教案(最新6篇)

作为一位兢兢业业的人民教师,就不得不需要编写教案,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?以下是小编整理的幼儿园认识颜色教案范文,仅供参考,希望能够帮助到大家。  幼儿园认识颜色...
教案大全2018-05-03
幼儿园认识颜色教案(最新6篇)

闻一多先生的说和做教案(精简6篇)

闻一多先生的说和做教案1导语:每一节课堂都有老师精心备课,都离不开教案。下面小编整理了闻一多先生的说和做教案,欢迎参考借鉴!闻一多先生的说和做教案教材分析这篇散文感情充沛,语言精警。从单元设计来看,学...
教案大全2018-04-07
闻一多先生的说和做教案(精简6篇)

唐僧骑马咚那个咚教案

活动设计: 童谣是具有中国特色的文学作品形式,它篇幅短...
教案大全2015-06-07
唐僧骑马咚那个咚教案

《奇妙的克隆》教案设计【精选3篇】

教学目的 1.培养学生严谨求实的科学态度和勇于创新的科学精神。 2.进一步了解说明顺序和说明方法。 3.引导学生养成...
教案大全2018-08-07
《奇妙的克隆》教案设计【精选3篇】