数学教案-函数的图象

数学教案-函数的图象

函数的图象

教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程设计

(一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

5.请在坐标平面内画出A点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。

这个函数关系中,y与x的'函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

具体做法是

第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。

函数式y=2x+1

自变量x

-2

-1

0

1

2

函数值y

-3

-1

1

3

5

(这种用表格表示函数关系的方法叫做列表法)

第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

第三步 连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13-24

例1 在同一直角坐标系中画出下列函数式的图象:

(1)y=-3x;(2)y=-3x+2; (3)y=-3x-3

分析:按照列表、描点、连线三步操作。

解:

函数式(

1)y=-3x

自变量x

-2

-1

0

1

2

函数y

6

3

0

-3

-6

函数(2)y=-3x+2

自变量x

-2

-1

0

1

2

函数y

8

5

2

-1

-4

函数(3)y=-3x-3

自变量x

-2

-1

0

1

2

函数y

3

0

-3

-6

-9

它们的图象分别是图13-25中的(1)(2)(3)。

例2 某化工厂1月到12月生产某种产品的统计资料如下:

X/月份

1

2

3

4

5

6

7

8

9

10

11

12

Y/产品吨数

2

3

3

4

5

6

6

6

5

4

5

7

(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同一直角坐标系中。

(2)按照月份由小到大的顺序,把每两个点用线段连接起来。

(3)解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。

(4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

解:(1),(2)见图13-26

(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。

产量下降:8月到9月,9月到10月。

产量不升不降:2月到3月;6月到7月,7月到8月。

(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5 ,所以4月15日的产量约为4.5吨。

(三)课堂练习

已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。

(四)小结

到现在,我们已经学过了表示函数关系的方法有三种:

1.解析式法——用数学式子表示函数的关系。

2.列表法——通过列表给出函数y与自变量x的对应关系。

3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。

这三种表示函数的方法各有优缺点。

1.用解析法表示函数关系

优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。

缺点:在求对应值时,有时要做较复杂的计算。

2.用列表表示函数关系

优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。

缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。

3.用图象法表示函数关系

优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。

缺点:从自变量的值常常难以找到对应的函数的准确值。

函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。

(五)作业

1.在图13-27中,不能表示函数关系的图形有()

(A)(a),(b),(c) (B)(b),(c),(d) (C)(b),(c),(e) (D)(b),(d),(e)

2.函数y=

相关文章

《山雨》 教案

教案 TITLE=《山雨》 《山雨》教学设计 学习目标 1.有感情地朗读课文,背诵自己喜欢的部分。 2.感受山雨带韵味,体会作者对山...
教案大全2014-02-08
《山雨》 教案

故都的秋优质课教案(优选5篇)

故都的“秋”,其实是郁达夫的“秋”,是表现了他主观感情、审美取向、文学气质和人生态度的“秋”,故都的秋优质课教案。本文的悲凉美感,跟传统的悲秋情结有关,跟作者的身世性格有关,跟作品的创作背景也有关。下...
教案大全2017-03-04
故都的秋优质课教案(优选5篇)

《可能性》的教案【推荐3篇】

《可能性》 一、 教学内容 可能性 二、教学目标 (1)知识方面:通过抛硬币、摸球、装粉笔等游戏活动使学生初步体验有些事件的发生是确定的,有些是不确定的。 (2)能力方面:初步学会用“可能...
教案大全2018-03-01
《可能性》的教案【推荐3篇】

八年级《地理》下册教案8.1《沟壑纵横的特殊地形区-黄土高原》八年级《地

八年级《地理》下册教案8.1《沟壑纵横的特殊地形区——黄土高原》 第一节 沟壑纵横的特殊地形区——黄土高原教学设计 一、教学目标 (一)知识目标 1、黄土高原的地理位置。 2、黄土高原上黄土物质的形成...
教案大全2013-08-06
八年级《地理》下册教案8.1《沟壑纵横的特殊地形区-黄土高原》八年级《地

《分数的基本性质》教学反思(优秀3篇)

下面是关于《分数的基本性质》教学反思,仅供参考!在一年一度的实验老师研讨活动中,《分数的基本性质》教学反思。我选择了《分数的基本性质》为授课内容。《分数的基本性质》是人教版小学数学五年级下册的...
教案大全2018-06-09
《分数的基本性质》教学反思(优秀3篇)

七色光教案(精彩6篇)

作为一位不辞辛劳的人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么什么样的教案才是好的呢?下面是小编帮大家整理的七色光教案,欢迎大家分享。  ...
教案大全2018-05-09
七色光教案(精彩6篇)